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Introduction

• Discovery of a Higgs boson at 126 GeV is 
monumental step in high energy physics. It has 
important implications for different possible 
mechanisms of electroweak symmetry breaking.  

‣ Technicolor w/o a light scalar is ruled out.

‣ SUSY prefers a light Higgs, but 126 GeV is a bit 
uncomfortably heavy for MSSM.

- Heavy stops, but more fine-tuned.

- Extensions to enhance the quartic coupling.



Introduction

• An alternative is a composite Higgs.  To make it 
light, there should be some symmetry to protect 
its mass, i.e., Higgs as a pseudo-Nambu-Goldstone 
boson (PNGB) (Kaplan & Georgi ’84).

- Little Higgs theories

- Models motivated from AdS/CFT

- Gauge-Higgs unification

• Higgs boson mass is model-dependent, e.g., 
whether there is a tree-level quartic coupling.



• Top quark mass is a challenge for composite 
Higgs models.

- Partial compositeness (Kaplan ’91): Elementary 
top quarks mix with composite operators, tLO, 
⇒ heavy top-like resonances.

- In a class of models (MCHM)                          
where the explicit symmetry                
breaking dominantly comes                        
from such mixings,                                  
mh=126 GeV ⇒ mt’ < TeV
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Figure 1: Masses of the two lightest fermion resonances for mh = 125GeV (taking ⇠ = 0.2 and mt = 160GeV (the
running top mass at ⇠ TeV)). In blue we plot the MCHM5 result; the solid line corresponds to Eq. (25) calculated in
the approximation ✏2 ⌧ 1, while the dashed line is the exact result (always �F 2 = 0). In solid red we plot the result
for the MCHM10 (✏2 ⌧ 1 and �F 2 = 0) with Q1 ! Q6. The black solid line is for rL = 5 and rR = 1 (denoted
MCHM5+1), fixing for illustration FL
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= 125 GeV. One can see that there is always a light state with a mass roughly between 500 GeV

and 700 GeV. Now, since light resonances imply large values of ✏ (see Eq. (14)), one could worry

about the validity of our approximation ✏2 ⌧ 1. In Figure 1 we show with a dashed blue line the

result obtained without taking the small ✏2 limit. As can be appreciated, the di↵erences are small

and the approximation ✏2 ⌧ 1 always gives a more conservative upper-bound on the resonance

masses. We note however that in the exact result the masses of the lightest fermionic resonances

di↵er from m
Q1,4 due to the sizable mixings with t

L,R

. Therefore not only a light Higgs implies light

fermionic resonances, but also a sizable degree of compositeness of the top.

A very similar model to the MCHM5 is the MCHM10 [6], in which the left-handed and right-

handed top quarks are embedded into spurions in the 10 representation of SO(5). In this model

Eqs. (15)-(17) also hold, and � is given by 4
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0 (0) and the correlators are the same as Eq. (24) but

4As in Ref. [6], we are not considering invariants formed by contracting the spurions with the Levi-Civita tensor
(see Appendix B). These invariants can be eliminated by imposing extra parities in the strong sector, along the lines
of the models in Ref. [11].
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- Top condensation (Nambu ’89, Miransky et al ’89): 
Higgs is a bound state of    .

‣ mt ~ 600 GeV (yt ~3-4), mh~ 2mt (in leading Nc 
approximation)

‣ mt, mh may be reduced by raising the 
compositeness scale at the expenses of fine 
tuning, but still too heavy. (Bardeen, Hill, Linder ’90)

Composite Higgs

t̄t



• An attractive solution to the top mass problem is 
to invoke the seesaw mechanism (Dobrescu & Hill 
’98): introducing vector-like singlet quarks χL, χR 
to mix with top quark.

Top Seesaw Model

The coefficients z are combinations of the SU(3)1×U(1)1×U(1)B−L gauge couplings and

charges:

zAB =
2

π

(

4

3
κ + YAYBκ1 + XAXBκB−L

)

, (7)

where Y and X are the U(1)1 and U(1)B−L charges, respectively. Our charge assignment

gives the following inequalities:

ztχ > ztt, ztb > zχb ,

zχt > zχχ > ztt . (8)

A necessary condition for having a non-zero dynamical mass mAB is that at least one of the

three zA′B coefficients is above a critical value, zcrit = 1, or that the corresponding current

mass µAB is non-zero. In the low energy effective theory this condition corresponds to

the requirement of having a negative squared mass or a tadpole term for the composite

scalar formed in the ALBR channel [12]. We need the formation of the 〈χLtR〉 and 〈tLχR〉
condensates, and therefore we require zχt, ztχ > 1. Choosing the three gauge couplings

such that ztb < 1 ensures that the qLbR and χLbR channels are sub-critical, so that bR does

not participate in condensates. Furthermore, if ztt is sub-critical, the q̄LtR condensate will

be aligned with q̄LχR. In addition, we assume for convenience that zχχ < 1. All the above

conditions on the z coefficients are satisfied provided
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In this case, the most general dynamical mass matrix (up to an SU(2)W transformation)

is given in the weak eigenstate basis by

L = − (tL , χL)

(

mtt mtχ

mχt mχχ

)(

tR
χR

)

+ h.c. (10)

Therefore, we need to solve the subset of four coupled gap equations included in eq. (6),

where the functions F can be computed by keeping the weak eigenstates in the external

lines, and the χ and t mass eigenstates running in the loop. Keeping only the quadratic

and logarithmic divergences, with a physical cut-off given by the mass of the heavy gauge

bosons, we obtain:
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4

but a light eigenstate ~ 173 GeV can be obtained 
which is identified as the top quark.

m2
tt +m2

t� ⇠ (600GeV)2,



• A light Higgs boson arises naturally if the 
underlying strong dynamics preserves a U(3) 
symmetry among (tL, bL, χL).

‣ Higgs field is PNGB of U(3) →U(2)

Top Seesaw with a Light Higgs



• Assuming the underlying (non-confining) strong 
dynamics is approximately U(3)L X U(2)R 
symmetric for (tL, bL, χL) and (tR, χR), they form 
composite scalars,

Scalar Potential
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significantly below mt is generic. A 125 GeV Higgs boson is compatible with reasonable

parameters of this model. This model contains two composite Higgs doublets and two

composite complex singlet scalars, together with the vector-like top-partner fermion. The

strongest constraint of this model comes from the custodial SU(2) violating T parameter,

which requires the chiral symmetry breaking and hence all heavy states other than the

light Higgs boson to be near ∼ 10 TeV. This does requires some tuning to obtain the

electroweak symmetry breaking at ∼ 250 GeV. Nevertheless, given that no new physics

is found at the LHC so far, some tuning in the electroweak scale is probably inevitable in

any theory which attempts to explain the origin of the electroweak symmetry breaking.

This paper is organized as follows.

2 U(3)L × U(2)R global symmetry

We consider an effective theory at a scale Λ # 1 TeV that includes the SM gauge group

and fermions, an SU(2)W -singlet vector-like quark, χ, of electric charge +2/3, and some

4-fermion interactions suppressed by Λ. This theory does not include a Higgs doublet nor

any elementary scalars. We assume that some of the 4-fermion interactions involving third

generation quarks and χ are attractive and sufficiently strongly coupled to form quark-

antiquark bound states. These strong interactions are not confining, because at distances

longer than 1/Λ the effects of the 4-fermion interactions (other then the presence of bound

states) are exponentially suppress.

The low energy theory below Λ then consists of the SM gauge group and fermions,

the vector-like quark χ, and the composite fields that are deeply bound such that their

masses are less than the compositeness scale Λ. Concretely, we take the constituents of

the deeply bound states to be only χL, χR, the right-handed top quark tR, and the left-

handed top-bottom doublet ψ3
L = (tL, bL). In the limit where the electroweak interactions

are ignored, the kinetic terms of these quarks have an U(3)L × U(2)R chiral symmetry,

which we assume to be approximately preserved by the 4-fermion interactions. In Section

? we outline some renormalizable model that induces 4-fermion interactions of this type.

The U(3)L×U(2)R symmetric interactions give rise to the following Yukawa couplings

of the composite scalars (collectively labelled by Φ) to their constituents:

LYukawa = −ξ
(

ψ̄3
L, χ̄L

)

Φ

(

tR
χR

)

+H.c. (2.1)

Here ξ is a dimensionless coupling whose value at scale Λ, upon integrating out Φ, matches
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the coefficient of the 4-fermion interactions. The scalar field Φ is a 3× 2 complex matrix

Φ =
(

Φt Φχ

)

, (2.2)

where the scalar fields Φt and Φχ are the bound states of the U(3)L triplet (tL, bL,χL)

with tR and χR, respectively:

Φt ∼ t̄R

(

ψ3
L

χL

)

, Φχ ∼ χ̄R

(

ψ3
L

χL

)

. (2.3)

At scales µ < Λ, the Yukawa couplings (2.1) give rise to the following potential for Φ:

VΦ =
λ1
2
Tr[(Φ†Φ)2] +

λ2
2

(

Tr[Φ†Φ]
)2

+M2
ΦΦ

†Φ . (2.4)

The quartic couplings λ1 and λ2 depend on the scale µ; if the kinetic term for Φ is

canonically normalized, then λ1 and λ2 become non-perturbative near Λ. In the large

Nc limit, λ1 is generated by a fermion loop, while λ2 vanishes. Scalar loops, however,

generate a non-zero value for λ2, so that λ1 # |λ2|. In Section A, we will use one loop

RG equations to estimate the relative ratio of λ1 and λ2.

The squared mass of Φ satisfies M2
Φ $ Λ2, and if the 4-fermion interactions are

super-critical, then M2
Φ < 0 triggering spontaneous symmetry breaking of U(3)L×U(2)R.

Given that |MΦ| $ Λ, sub-leading effects that break the U(2)R chiral symmetry (which

rotates tR and χR) can induce a large relative splitting of the masses for Φt and Φχ. We

parametrize these effects by

VU(2)R = δM2
tt Φ

†
tΦt + δM2

χχ Φ†
χΦχ + (M2

χtΦ
†
χΦt +H.c.) (2.5)

The U(2) breaking masses can be diagonalized by a U(2) rotation. As we will see later, it

is convenient to work in a different basis from the one that diagonalizes these mass terms

so we will keep Eq. (2.5) general.

Gauge invariant masses for the SU(2)W -singlet quarks can be present at the scale Λ:

Lmass = −µχtχ̄LtR − µχχχ̄LχR +H.c. (2.6)

We assume that µχt, µχχ $ Λ, so that the tree-level quark masses do not disrupt the

formation of bound states. The above mass terms break U(3)L ×U(2)R down to U(2)L ×
U(1)R. Below Λ, these fermion masses map to tadpole terms for the SU(2)W -singlet

scalars:

Vtadpole = −(0, 0, Cχt)Φt − (0, 0, Cχχ)Φχ +H.c. (2.7)
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• Symmetry breaking terms

Scalar Potential
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Matching at the scale Λ, we have

Cχt ≈
µχt

ξ
Λ2 , Cχχ ≈

µχχ

ξ
Λ2 . (2.8)

One can check that by integrating out the scalars at the cutoff scale (where M2
Φ ∼ Λ2)

one recovers the fermion mass terms (2.6).

The effective potential of the scalar sector below the compositeness scale is given by

Vscalar =
λ1 + λ2

2

[

(Φ†
tΦt)

2 + (Φ†
χΦχ)

2
]

+ λ1|Φ†
tΦχ|2 + λ2(Φ

†
tΦt)(Φ

†
χΦχ)

+M2
ttΦ

†
tΦt +M2

χχΦ
†
χΦχ + (M2

χtΦ
†
χΦt +H.c.)

−(0, 0, 2Cχt)ReΦt − (0, 0, 2Cχχ)ReΦχ , (2.9)

where M2
tt and M2

χχ are the sums of the mass terms in Eqs. (2.4) and (2.5). We have

chosen the phases of Φt and Φχ to make Cχt and Cχχ real. For simplicity, we assume that

M2
χt is also real and there is no CP violation in the electroweak symmetry breaking sector.

The SU(2)W × U(1)Y gauge symmetry is a subgroup of the U(3)L × U(2)R chiral

symmetry. Thus, the electroweak interactions explicitly break the chiral symmetry. The

U(3)L triplets Φt and Φχ can be written in terms of fields belonging to electroweak rep-

resentations:

Φt =

(

Ht

φt

)

, Φχ =

(

−Hχ

φχ

)

. (2.10)

Ht and Hχ transform under SU(2)W × U(1)Y as the SM Higgs doublet, while φt and

φχ are SU(2)W × U(1)Y singlets. Let us use a linear representation for fields of definite

electric charge:

Ht =





1√
2
(vt + ht + iAt)

H−
t



 , Hχ =





1√
2
(vχ + hχ + iAχ)

H−
χ



 ,

φt =
1√
2
(ut + ϕt + iπt) , φχ =

1√
2
(uχ + ϕχ + iπχ) . (2.11)

The VEVs vt, vχ, ut and uχ are real, and some of them may vanish, depending on the

parameters of the effective potential. We use the notation v2t + v2χ = v2 and u2
t + u2

χ = u2.

If at least one of the VEVs of the SU(2)W -doublets is nonzero, then v ≈ 246 GeV is the

weak scale.

It is convenient to perform an U(2)R transformation (which rotates tR and χR, as well

as Φt and Φχ) to go to a basis where vt = 0 and vχ = v. For simplicity, we will use the

5

We can use U(2) rotation to set C�� = 0.



• Total effective scalar potential:

Scalar Potential

Matching at the scale Λ, we have

Cχt ≈
µχt

ξ
Λ2 , Cχχ ≈

µχχ

ξ
Λ2 . (2.8)

One can check that by integrating out the scalars at the cutoff scale (where M2
Φ ∼ Λ2)

one recovers the fermion mass terms (2.6).

The effective potential of the scalar sector below the compositeness scale is given by

Vscalar =
λ1 + λ2

2

[

(Φ†
tΦt)

2 + (Φ†
χΦχ)

2
]

+ λ1|Φ†
tΦχ|2 + λ2(Φ

†
tΦt)(Φ

†
χΦχ)

+M2
ttΦ

†
tΦt +M2

χχΦ
†
χΦχ + (M2

χtΦ
†
χΦt +H.c.)

−(0, 0, 2Cχt)ReΦt − (0, 0, 2Cχχ)ReΦχ , (2.9)

where M2
tt and M2

χχ are the sums of the mass terms in Eqs. (2.4) and (2.5). We have

chosen the phases of Φt and Φχ to make Cχt and Cχχ real. For simplicity, we assume that

M2
χt is also real and there is no CP violation in the electroweak symmetry breaking sector.

The SU(2)W × U(1)Y gauge symmetry is a subgroup of the U(3)L × U(2)R chiral

symmetry. Thus, the electroweak interactions explicitly break the chiral symmetry. The

U(3)L triplets Φt and Φχ can be written in terms of fields belonging to electroweak rep-

resentations:

Φt =

(

Ht

φt

)

, Φχ =

(

−Hχ

φχ

)

. (2.10)

Ht and Hχ transform under SU(2)W × U(1)Y as the SM Higgs doublet, while φt and

φχ are SU(2)W × U(1)Y singlets. Let us use a linear representation for fields of definite

electric charge:

Ht =





1√
2
(vt + ht + iAt)

H−
t



 , Hχ =





1√
2
(vχ + hχ + iAχ)

H−
χ



 ,

φt =
1√
2
(ut + ϕt + iπt) , φχ =

1√
2
(uχ + ϕχ + iπχ) . (2.11)

The VEVs vt, vχ, ut and uχ are real, and some of them may vanish, depending on the

parameters of the effective potential. We use the notation v2t + v2χ = v2 and u2
t + u2

χ = u2.

If at least one of the VEVs of the SU(2)W -doublets is nonzero, then v ≈ 246 GeV is the

weak scale.

It is convenient to perform an U(2)R transformation (which rotates tR and χR, as well

as Φt and Φχ) to go to a basis where vt = 0 and vχ = v. For simplicity, we will use the
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Assuming M2
�� < 0 < M2

tt, minimize the potential:
hHti = 0, h�ti = ut ⌘ u sin � = u s� ,

hH�i = v, h��i = u� ⌘ u cos � = u c� ,

same notation in this basis as in Eqs. (2.9)-(2.11). In this basis we define ut = u sin γ and

uχ = u cos γ, and the short-hand notation sγ = sin γ and cγ = cos γ.

The extremization conditions for Vscalar relate the parameters from the effective po-

tential to the VEVs:

v

(

M2
χt +

λ1
2
u2sγcγ

)

= 0 ,

v

(

M2
χχ +

λ1
2
(u2c2γ + v2) +

λ2
2

(

u2 + v2
)

)

= 0 , (2.12)

for the derivatives with respect to ht and hχ, and

Cχt = u

[

M2
χtcγ +

(

M2
tt +

λ1
2
u2 +

λ2
2
(u2 + v2)

)

sγ

]

,

Cχχ = u

[

M2
χtsγ +

(

M2
χχ +

λ1 + λ2
2

(u2 + v2)

)

cγ

]

, (2.13)

for the derivatives with respect to ϕt and ϕχ. Eqs. (2.12) and (2.13) have a solution for

v = 0, and a different solution for v > 0. The latter is the global minimum of the effective

potential provided the following condition is satisfied: ... ???

For v > 0, Eqs. (2.12) imply

M2
χt = −

λ1
2
u2sγcγ ,

M2
χχ = −

λ1
2

(

u2c2γ + v2
)

−
λ2
2

(

u2 + v2
)

. (2.14)

Substituting these into Eqs. (2.13) gives

√
2Cχt = u sγ

[

M2
tt +

λ1
2
u2s2γ +

λ2
2

(

u2 + v2
)

]

,

√
2Cχχ = 0 . (2.15)

Thus, the basis where the only SU(2)W -doublet that has a VEV is Hχ is the one where

Cχχ = 0 (or equivalently, where tR and χR are defined such that µχχ = 0). Since the

electroweak symmetry is broken only by the VEV of Hχ, the eaten Nambu-Goldstone

bosons are contained in Hχ only. The charged Higgs bosons resides entirely within Ht,

and their mass squared is

M2
H± = M2

tt +
λ1
2
u2s2γ +

λ2
2

(

u2 + v2
)

. (2.16)
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In terms of the physical charged Higgs boson mass, the tadpole coefficient Cχt is given by

√
2Cχt = u sγ M

2
H± . (2.17)

Neglecting the mixing of the charm and up quarks with t and χ, the mass terms of

the heavy charge-2/3 fermions quarks, arising from Eq. (2.1), are given by

−
ξ√
2
(tL,χL)

(

0 v
usγ ucγ

)(

tR
χR

)

+H.c. . (2.18)

3 Analytical expression for the Higgs mass

Substituting Eqs. (2.14)-(2.17) back into the scalar potential (2.9), one can find the masses

of various scalar fields. In particular, the mass-squared matrix of the CP-even neutral

scalars are given by the 4× 4 matrix:
























M2
H± +

λ1
2
v2 0 −

λ1
2
uvcγ −

λ1
2
uvsγ

0 (λ1 + λ2)v2 λ2uvsγ (λ1 + λ2)uvcγ

−
λ1
2
uvcγ λ2uvsγ M2

H±+

[

λ1

(

1−
c2γ
2

)

+ λ2

]

u2

(

λ1
2

+ λ2

)

u2sγcγ

−
λ1
2
uvsγ (λ1 + λ2)uvcγ

(

λ1
2

+ λ2

)

u2sγcγ

[

λ1

(

1−
s2γ
2

)

+ λ2c
2
γ

]

u2

























(3.19)

For v $ u, the top seesaw mechanism requires sγ ≈ λt/ξ ∼ 1/ξ to obtain the correct

top quark mass. For large ξ, sγ $ 1. The lightest Higgs boson mass-squared is given by

the smallest eigenvalue of the mass matrix (3.19). Performing an expansion in sγ we find

m2
h =

λ1v2s2γM
2
H±

2M2
H±+ λ1u2

[

1 +
(λ1 + 2λ2)(M2

H±+ λ1u2)2 + (λ1 + λ2)λ1v2M2
H±

(λ1 + λ2)M2
H±(2M2

H±+ λ1u2)
s2γ +O(s4γ)

]

.

(3.20)

4 U(3) Breaking from Electroweak Interactions

In the previous sections we have assumed that the mass and the quartic terms in the

potential respect the U(3)L symmetry, and the only explicit U(3)L breaking comes from

the tadpole terms. However, other explicit U(3) breaking effects, such as the SU(2)W ×
U(1)Y gauge interactions can feed into the mass and the quartic terms through loops. In
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same notation in this basis as in Eqs. (2.9)-(2.11). In this basis we define ut = u sin γ and

uχ = u cos γ, and the short-hand notation sγ = sin γ and cγ = cos γ.

The extremization conditions for Vscalar relate the parameters from the effective po-

tential to the VEVs:

v

(

M2
χt +

λ1
2
u2sγcγ

)

= 0 ,

v

(

M2
χχ +

λ1
2
(u2c2γ + v2) +

λ2
2

(

u2 + v2
)

)

= 0 , (2.12)

for the derivatives with respect to ht and hχ, and

Cχt = u

[

M2
χtcγ +

(

M2
tt +

λ1
2
u2 +

λ2
2
(u2 + v2)

)

sγ

]

,

Cχχ = u

[

M2
χtsγ +

(

M2
χχ +

λ1 + λ2
2

(u2 + v2)

)

cγ

]

, (2.13)

for the derivatives with respect to ϕt and ϕχ. Eqs. (2.12) and (2.13) have a solution for

v = 0, and a different solution for v > 0. The latter is the global minimum of the effective

potential provided the following condition is satisfied: ... ???

For v > 0, Eqs. (2.12) imply

M2
χt = −

λ1
2
u2sγcγ ,

M2
χχ = −

λ1
2

(

u2c2γ + v2
)

−
λ2
2

(

u2 + v2
)

. (2.14)

Substituting these into Eqs. (2.13) gives

√
2Cχt = u sγ

[

M2
tt +

λ1
2
u2s2γ +

λ2
2

(

u2 + v2
)

]

,

√
2Cχχ = 0 . (2.15)

Thus, the basis where the only SU(2)W -doublet that has a VEV is Hχ is the one where

Cχχ = 0 (or equivalently, where tR and χR are defined such that µχχ = 0). Since the

electroweak symmetry is broken only by the VEV of Hχ, the eaten Nambu-Goldstone

bosons are contained in Hχ only. The charged Higgs bosons resides entirely within Ht,

and their mass squared is

M2
H± = M2

tt +
λ1
2
u2s2γ +

λ2
2

(

u2 + v2
)

. (2.16)
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C�� = 0



Top Quark Mass
In terms of the physical charged Higgs boson mass, the tadpole coefficient Cχt is given by

√
2Cχt = u sγ M

2
H± . (2.17)

Neglecting the mixing of the charm and up quarks with t and χ, the mass terms of

the heavy charge-2/3 fermions quarks, arising from Eq. (2.1), are given by

−
ξ√
2
(tL,χL)

(

0 v
usγ ucγ

)(

tR
χR

)

+H.c. . (2.18)

3 Analytical expression for the Higgs mass

Substituting Eqs. (2.14)-(2.17) back into the scalar potential (2.9), one can find the masses

of various scalar fields. In particular, the mass-squared matrix of the CP-even neutral

scalars are given by the 4× 4 matrix:
























M2
H± +

λ1
2
v2 0 −

λ1
2
uvcγ −

λ1
2
uvsγ

0 (λ1 + λ2)v2 λ2uvsγ (λ1 + λ2)uvcγ

−
λ1
2
uvcγ λ2uvsγ M2

H±+

[

λ1

(

1−
c2γ
2

)

+ λ2

]

u2

(

λ1
2

+ λ2

)

u2sγcγ

−
λ1
2
uvsγ (λ1 + λ2)uvcγ

(

λ1
2

+ λ2

)

u2sγcγ

[

λ1

(

1−
s2γ
2

)

+ λ2c
2
γ

]

u2

























(3.19)

For v $ u, the top seesaw mechanism requires sγ ≈ λt/ξ ∼ 1/ξ to obtain the correct

top quark mass. For large ξ, sγ $ 1. The lightest Higgs boson mass-squared is given by

the smallest eigenvalue of the mass matrix (3.19). Performing an expansion in sγ we find

m2
h =

λ1v2s2γM
2
H±

2M2
H±+ λ1u2

[

1 +
(λ1 + 2λ2)(M2

H±+ λ1u2)2 + (λ1 + λ2)λ1v2M2
H±

(λ1 + λ2)M2
H±(2M2

H±+ λ1u2)
s2γ +O(s4γ)

]

.

(3.20)

4 U(3) Breaking from Electroweak Interactions

In the previous sections we have assumed that the mass and the quartic terms in the

potential respect the U(3)L symmetry, and the only explicit U(3)L breaking comes from

the tadpole terms. However, other explicit U(3) breaking effects, such as the SU(2)W ×
U(1)Y gauge interactions can feed into the mass and the quartic terms through loops. In
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• Charge-2/3 fermion mass matrix:

Light eigenvalue: mt ⇡
⇠p
2
v s� ) s� ⇡ yt

⇠
⇡ 1

4
⇠ 1

5
.

Heavy t’ fermion: mt0 ⇡
⇠p
2
u



• CP-even scalar mass matrix:

Light Higgs Mass

In terms of the physical charged Higgs boson mass, the tadpole coefficient Cχt is given by

√
2Cχt = u sγ M

2
H± . (2.17)

Neglecting the mixing of the charm and up quarks with t and χ, the mass terms of

the heavy charge-2/3 fermions quarks, arising from Eq. (2.1), are given by

−
ξ√
2
(tL,χL)

(

0 v
usγ ucγ

)(

tR
χR

)

+H.c. . (2.18)

3 Analytical expression for the Higgs mass

Substituting Eqs. (2.14)-(2.17) back into the scalar potential (2.9), one can find the masses

of various scalar fields. In particular, the mass-squared matrix of the CP-even neutral

scalars are given by the 4× 4 matrix:
























M2
H± +

λ1
2
v2 0 −

λ1
2
uvcγ −

λ1
2
uvsγ

0 (λ1 + λ2)v2 λ2uvsγ (λ1 + λ2)uvcγ

−
λ1
2
uvcγ λ2uvsγ M2

H±+

[

λ1

(

1−
c2γ
2

)

+ λ2

]

u2

(

λ1
2

+ λ2

)

u2sγcγ

−
λ1
2
uvsγ (λ1 + λ2)uvcγ

(

λ1
2

+ λ2

)

u2sγcγ

[

λ1

(

1−
s2γ
2

)

+ λ2c
2
γ

]

u2

























(3.19)

For v $ u, the top seesaw mechanism requires sγ ≈ λt/ξ ∼ 1/ξ to obtain the correct

top quark mass. For large ξ, sγ $ 1. The lightest Higgs boson mass-squared is given by

the smallest eigenvalue of the mass matrix (3.19). Performing an expansion in sγ we find

m2
h =

λ1v2s2γM
2
H±

2M2
H±+ λ1u2

[

1 +
(λ1 + 2λ2)(M2

H±+ λ1u2)2 + (λ1 + λ2)λ1v2M2
H±

(λ1 + λ2)M2
H±(2M2

H±+ λ1u2)
s2γ +O(s4γ)

]

.

(3.20)

4 U(3) Breaking from Electroweak Interactions

In the previous sections we have assumed that the mass and the quartic terms in the

potential respect the U(3)L symmetry, and the only explicit U(3)L breaking comes from

the tadpole terms. However, other explicit U(3) breaking effects, such as the SU(2)W ×
U(1)Y gauge interactions can feed into the mass and the quartic terms through loops. In
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(ht, h�,�t,��)

Lightest eigenvalue:

m2
h =

 
�1 s2�
2

!✓
M2

H±

M2
H± + �1u2/2

◆
v2 +O(s4�)

⇡
✓

�1

2⇠2

◆✓
M2

H±

M2
H± + �1u2/2

◆
y2t v

2



Light Higgs Mass
Effective Higgs quartic coupling: 

�h ⇡
✓

�1

2⇠2

◆✓
M2

H±

M2
H± + �1u2/2

◆
y2t

In the limit ξ→∞ or mt→0,  sinγ→0 and Cχt→0, 
there is no explicit U(3) breaking, Higgs becomes 
an exact NGB. 

0.4 <
�1

2⇠2
< 1 (fermion loop approx.)(IR fixed point)

y2t ⇠ 0.6 @ 10 TeV

) mh < 185 GeV



Electroweak Interactions
• Explicit U(3) breaking electroweak interaction can 

further decreases the Higgs boson mass.

(mass splitting)�m2
h (mass) =

9g22 + 3g21
64⇡2

M2
⇢

u2
v2 ⇡ �0.16v2

M2
⇢

(5u)2

�m2
h (quartic) = �9g22 + 3g21

64⇡2
�1v

2 ln
M⇢

µ
⇡ �0.16v2

✓
�1

2⇠2

◆✓
⇠

3.6

◆2

ln
M⇢

µ

(quartic splitting)

• mh=126 GeV corresponds to λh=0.14 @ 10 TeV.

where Mρ is the cutoff the EW gauge loop.



Numerical Results
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Numerical Results
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• Constraint on T-parameter (assuming no cancellation) 
requires f (≈u)≳ 6 TeV → some fine tuning is needed 
to get v≪f.  It also implies other scalars and fermions 
are heavy, close to the decoupling limit.



Conclusions
• A light Higgs boson arises naturally in a composite 

Higgs model where the top and a new vector-like 
quarks participate in the strong dynamics which 
preserve a U(3) global symmetry.  It is compatible 
with the 126 GeV Higgs boson discovered.

• The strongest constraint comes from the T 
parameter due to lack of the custodial SU(2) 
symmetry.  The U(3) breaking ≳ 6 TeV pushes the 
model to the decoupling limit.

• Probing heavy scalar and fermion states probably 
needs future generation colliders.


