A Light Higgs Boson from a Composite Higgs Theory

Hsin-Chia Cheng University of California, Davis

Based on work with B. Dobrescu, and J. Gu, in preparation

SUSY 2013, Trieste, Aug. 26-31, 2013

Introduction

- Discovery of a Higgs boson at 126 GeV is monumental step in high energy physics. It has important implications for different possible mechanisms of electroweak symmetry breaking.
 - Technicolor w/o a light scalar is ruled out.
 - SUSY prefers a light Higgs, but 126 GeV is a bit uncomfortably heavy for MSSM.
 - Heavy stops, but more fine-tuned.
 - Extensions to enhance the quartic coupling.

Introduction

- An alternative is a composite Higgs. To make it light, there should be some symmetry to protect its mass, i.e., Higgs as a pseudo-Nambu-Goldstone boson (PNGB) (Kaplan & Georgi '84).
 - Little Higgs theories
 - Models motivated from AdS/CFT
 - Gauge-Higgs unification
- Higgs boson mass is model-dependent, e.g., whether there is a tree-level quartic coupling.

Composite Higgs

- Top quark mass is a challenge for composite Higgs models.
 - Partial compositeness (Kaplan '91): Elementary top quarks mix with composite operators, t_LO,
 ⇒ heavy top-like resonances.
 - In a class of models (MCHM) where the explicit symmetry breaking dominantly comes from such mixings, m_h =126 GeV $\Rightarrow m_{t'}$ < TeV

Pomarol, Riva, 1025.6434

Composite Higgs

- Top condensation (Nambu '89, Miransky et al '89): Higgs is a bound state of $\overline{t}t$.
 - $m_t \sim 600 \text{ GeV } (y_t \sim 3-4), m_h \sim 2m_t \text{ (in leading } N_c \text{ approximation)}$
 - m_t, m_h may be reduced by raising the compositeness scale at the expenses of fine tuning, but still too heavy. (Bardeen, Hill, Linder '90)

Top Seesaw Model

 An attractive solution to the top mass problem is to invoke the seesaw mechanism (Dobrescu & Hill '98): introducing vector-like singlet quarks χ_L, χ_R to mix with top quark.

$$\mathcal{L} = -(\overline{t}_L \ , \ \overline{\chi}_L) \begin{pmatrix} m_{tt} & m_{t\chi} \\ m_{\chi t} & m_{\chi\chi} \end{pmatrix} \begin{pmatrix} t_R \\ \chi_R \end{pmatrix} + \text{h.c.}$$
$$m_{tt}^2 + m_{t\chi}^2 \sim (600 \,\text{GeV})^2,$$

but a light eigenstate ~ 173 GeV can be obtained which is identified as the top quark.

Top Seesaw with a Light Higgs

- A light Higgs boson arises naturally if the underlying strong dynamics preserves a U(3) symmetry among (t_L, b_L, χ_L).
 - Higgs field is PNGB of U(3) \rightarrow U(2)

Scalar Potential

• Assuming the underlying (non-confining) strong dynamics is approximately U(3)_L X U(2)_R symmetric for (t_L , b_L , χ_L) and (t_R , χ_R), they form composite scalars, $\Phi = (\Phi_t \ \Phi_{\chi})$

$$\Phi_{t} = \begin{pmatrix} H_{t} \\ \phi_{t} \end{pmatrix} \sim \bar{t}_{R} \begin{pmatrix} \psi_{L}^{3} \\ \chi_{L} \end{pmatrix}, \quad \Phi_{\chi} = \begin{pmatrix} -H_{\chi} \\ \phi_{\chi} \end{pmatrix} \sim \bar{\chi}_{R} \begin{pmatrix} \psi_{L}^{3} \\ \chi_{L} \end{pmatrix}$$

Yukawa int: $\mathcal{L}_{\text{Yukawa}} = -\xi \left(\bar{\psi}_{L}^{3}, \bar{\chi}_{L} \right) \Phi \begin{pmatrix} t_{R} \\ \chi_{R} \end{pmatrix} + \text{H.c.}$

Scalar potential:

$$V_{\Phi} = \frac{\lambda_1}{2} \operatorname{Tr}[(\Phi^{\dagger}\Phi)^2] + \frac{\lambda_2}{2} (\operatorname{Tr}[\Phi^{\dagger}\Phi])^2 + M_{\Phi}^2 \Phi^{\dagger}\Phi$$

Scalar Potential

• Symmetry breaking terms

U(2) breaking: $V_{U(2)_R} = \delta M_{tt}^2 \Phi_t^{\dagger} \Phi_t + \delta M_{\chi\chi}^2 \Phi_{\chi}^{\dagger} \Phi_{\chi} + (M_{\chi t}^2 \Phi_{\chi}^{\dagger} \Phi_t + \text{H.c.})$

U(3) breaking: singlet fermion mass terms,

$$\mathcal{L}_{\text{mass}} = -\mu_{\chi t} \bar{\chi}_L t_R - \mu_{\chi \chi} \bar{\chi}_L \chi_R + \text{H.c.}$$

They map into scalar tadpole terms,
$$V_{\text{tadpole}} = -(0, 0, C_{\chi t}) \Phi_t - (0, 0, C_{\chi \chi}) \Phi_{\chi} + \text{H.c.}$$

$$C_{\chi t} \approx \frac{\mu_{\chi t}}{\xi} \Lambda^2 \quad , \quad C_{\chi \chi} \approx \frac{\mu_{\chi \chi}}{\xi} \Lambda^2 \ .$$

We can use U(2) rotation to set $C_{\chi\chi} = 0$.

Scalar Potential

• Total effective scalar potential:

$$V_{\text{scalar}} = \frac{\lambda_1 + \lambda_2}{2} \left[(\Phi_t^{\dagger} \Phi_t)^2 + (\Phi_{\chi}^{\dagger} \Phi_{\chi})^2 \right] + \lambda_1 |\Phi_t^{\dagger} \Phi_{\chi}|^2 + \lambda_2 (\Phi_t^{\dagger} \Phi_t) (\Phi_{\chi}^{\dagger} \Phi_{\chi}) + M_{tt}^2 \Phi_t^{\dagger} \Phi_t + M_{\chi\chi}^2 \Phi_{\chi}^{\dagger} \Phi_{\chi} + (M_{\chi t}^2 \Phi_{\chi}^{\dagger} \Phi_t + \text{H.c.}) - (0, 0, 2C_{\chi t}) \text{Re} \Phi_t - (0, 0, 2C_{\chi\chi}) \text{Re} \Phi_{\chi} ,$$

Assuming $M_{\chi\chi}^2 < 0 < M_{tt}^2$, minimize the potential: $\langle H_t \rangle = 0, \quad \langle \phi_t \rangle = u_t \equiv u \sin \gamma = u s_{\gamma},$ $\langle H_{\gamma} \rangle = v, \quad \langle \phi_{\gamma} \rangle = u_{\gamma} \equiv u \cos \gamma = u c_{\gamma},$ $M_{H^{\pm}}^{2} = M_{tt}^{2} + \frac{\lambda_{1}}{2}u^{2}s_{\gamma}^{2} + \frac{\lambda_{2}}{2}\left(u^{2} + v^{2}\right)$ $M_{\chi t}^2 = -\frac{\lambda_1}{2} u^2 s_\gamma c_\gamma \,,$ $\sqrt{2}C_{\gamma t} = u \, s_{\gamma} \, M_{H^{\pm}}^2$ $M_{\chi\chi}^{2} = -\frac{\lambda_{1}}{2} \left(u^{2} c_{\gamma}^{2} + v^{2} \right) - \frac{\lambda_{2}}{2} \left(u^{2} + v^{2} \right)$ $C_{\gamma\gamma} = 0$

Top Quark Mass

• Charge-2/3 fermion mass matrix:

$$-\frac{\xi}{\sqrt{2}}(t_L,\chi_L)\begin{pmatrix} 0 & v\\ us_\gamma & uc_\gamma \end{pmatrix}\begin{pmatrix} t_R\\ \chi_R \end{pmatrix} + \text{H.c.}$$

Light eigenvalue: $m_t \approx \frac{\xi}{\sqrt{2}} v s_\gamma \Rightarrow s_\gamma \approx \frac{y_t}{\xi} \approx \frac{1}{4} \sim \frac{1}{5}.$

Heavy t' fermion: $m_{t'} \approx \frac{\xi}{\sqrt{2}} u$

Light Higgs Mass

• **CP-even scalar mass matrix:** $(h_t, h_\chi, \phi_t, \phi_\chi)$

Lightest eigenvalue:

$$\begin{split} m_h^2 &= \left(\frac{\lambda_1 \, s_\gamma^2}{2}\right) \left(\frac{M_{H^{\pm}}^2}{M_{H^{\pm}}^2 + \lambda_1 u^2/2}\right) v^2 + \mathcal{O}(s_\gamma^4) \\ &\approx \left(\frac{\lambda_1}{2\xi^2}\right) \left(\frac{M_{H^{\pm}}^2}{M_{H^{\pm}}^2 + \lambda_1 u^2/2}\right) y_t^2 v^2 \end{split}$$

Light Higgs Mass

Effective Higgs quartic coupling:

$$\lambda_h \approx \left(\frac{\lambda_1}{2\xi^2}\right) \left(\frac{M_{H^{\pm}}^2}{M_{H^{\pm}}^2 + \lambda_1 u^2/2}\right) y_t^2$$

In the limit $\xi \rightarrow \infty$ or $m_t \rightarrow 0$, $\sin\gamma \rightarrow 0$ and $C_{\chi t} \rightarrow 0$, there is no explicit U(3) breaking, Higgs becomes an exact NGB.

(IR fixed point) $0.4 < \frac{\lambda_1}{2\xi^2} < 1$ (fermion loop approx.) $y_t^2 \sim 0.6$ @ IOTeV

 $\Rightarrow m_h < 185 \text{ GeV}$

Electroweak Interactions

• Explicit U(3) breaking electroweak interaction can further decreases the Higgs boson mass.

$$\Delta m_{h\,(\text{mass})}^{2} = \frac{9g_{2}^{2} + 3g_{1}^{2}}{64\pi^{2}} \frac{M_{\rho}^{2}}{u^{2}} v^{2} \approx -0.16v^{2} \frac{M_{\rho}^{2}}{(5u)^{2}} \quad \text{(mass splitting)}$$

$$\Delta m_{h\,(\text{quartic})}^{2} = -\frac{9g_{2}^{2} + 3g_{1}^{2}}{64\pi^{2}} \lambda_{1} v^{2} \ln \frac{M_{\rho}}{\mu} \approx -0.16v^{2} \left(\frac{\lambda_{1}}{2\xi^{2}}\right) \left(\frac{\xi}{3.6}\right)^{2} \ln \frac{M_{\rho}}{\mu}$$
(quartic splitting)

where M_{ρ} is the cutoff the EW gauge loop.

• m_h =126 GeV corresponds to λ_h =0.14 @ 10 TeV.

Numerical Results

•Light Higgs boson mass:

For
$$\xi = 3.6$$
, $\lambda_2/\lambda_1 = 0$,

Purple: no gauge contribution red: Mp/f=3 orange: Mp/f=5

Numerical Results

Constraint on T-parameter (assuming no cancellation) requires f (≈u) ≥ 6 TeV → some fine tuning is needed to get v≪f. It also implies other scalars and fermions are heavy, close to the decoupling limit.

Conclusions

- A light Higgs boson arises naturally in a composite Higgs model where the top and a new vector-like quarks participate in the strong dynamics which preserve a U(3) global symmetry. It is compatible with the I26 GeV Higgs boson discovered.
- The strongest constraint comes from the T parameter due to lack of the custodial SU(2) symmetry. The U(3) breaking ≥ 6 TeV pushes the model to the decoupling limit.
- Probing heavy scalar and fermion states probably needs future generation colliders.