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Text-book: perturbative gravity is complicated ! 

After symmetrization  
~ 100 terms ! 

= 

= 

de Donder gauge: 

~103 terms 

higher order 
vertices… 
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On-shell simplifications 
Graviton plane wave: 

= 

Gravity scattering amplitude: 

Yang-Mills polarization 

Yang-Mills vertex 

Yang-Mills amplitude 

On-shell 3-graviton vertex: 

Gravity processes = squares of gauge theory ones - entire S-matrix      
      Bern, Carrasco, HJ  [BCJ] 

MGR
tree(1, 2, 3, 4) =

st

u
AYM

tree(1, 2, 3, 4)⌦AYM
tree(1, 2, 3, 4)

H. Johansson SUSY 2013 



H. Johansson SUSY 2013 

Gravity should be simple off shell 

Einstein gravity → cubic     very schematically: 

Yang-Mills → cubic           very schematically: 

And gravity should be a double copy of a YM theory: Bern, Carrasco, HJ  
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UV problem = basic power counting 

Gravity: non-renormalizable 
 dimensionful coupling 

Yang-Mills: renormalizable 
     dimensionless coupling 

⇠
Z

d4Lp
. . . (pµp⌫) . . .

p21p
2
2p

2
3 . . . p

2
n

⇠
Z

d4Lp
. . . (gpµ) . . .

p21p
2
2p

2
3 . . . p

2
n

Naively expect gravity to behave worse than Yang-Mills  

For finite gravity à  vast cancellations needed 
seems implausible, but exists for N=8 SG in all known ampl’s. 

⇠ (pµ)2L ! (kµ)2L

external 
momenta 
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!   UV status of N=8 SUGRA 
!   Duality between color and kinematics 

!   Double-copy structure of gravity 
!   Ability to calculate 

!   Amplitude UV behavior from duality 
!   Current 5-loop SUGRA progress 

!   Conclusion 

Outline 



H. Johansson SUSY 2013 

SUGRA status on one page 
 Facts: 
!   No D=4 divergence of pure SG has been found to date. 
! Susy forbids 1,2 loop div. R2, R3  
!   Pure gravity 1-loop finite, 2-loop divergent Goroff & Sagnotti 

!   With matter: 1-loop divergent ‘t Hooft & Veltman 

!   Naively susy allows 3-loop div. R4 

!   N=8 SG and N=4 SG 3-loop finite! 
  

!   N=8 SG: no divergence before 7 loops 

!   D>4 divergences obey:  

!   7-loop div. in D=4 implies a 5-loop div.  
       in D=24/5  -- calculation in progress! 

UFinite? 

N=8 SG	


Ferrara, Zumino, Deser, Kay, Stelle, Howe, Lindström, 
Green, Schwarz, Brink, Marcus, Sagnotti�

Bern, Carrasco, Dixon, HJ, Kosower, Roiban, Davies, Dennen, Huang 

Marcus, Sagnotti, Bern, Dixon, Dunbar,  
Perelstein, Rozowsky, Carrasco, HJ, Kosower, Roiban 
�



Why is it interesting ? 
!   If N=8 SG is perturbatively finite, why is it interesting ? 
!   It better be finite for a good reason! 

!   Hidden new symmetry, for example 

!   Understanding the mechanism might open a host of 
possibilities 

!   Any indication of hidden structures yet? 

!   Gravity is a double copy of gauge theories 
!   Color-Kinematics: kinematics = Lie algebra 
 

!   Constraints from E-M duality ?    Kallosh,…. 

!   Hidden superconformal N=4 SUGRA ? 

!   Extended N=4 superspace ? Bossard, Howe, Stelle 
Symmetry? 

Gravity	


Bern, Carrasco, HJ 

Ferrara, Kallosh, Van Proeyen�
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Known UV divergences in D>4 
Plot of critical dimensions of N = 8 SUGRA and N = 4 SYM 

Known bound for N = 4  
Bern, Dixon, Dunbar, Rozowsky, 
Perelstein; Howe, Stelle 
current trend for N = 8 

If N = 8 div. at L=7	

Finite �

? �
Divergent�
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Known UV divergences in D>4 
Plot of critical dimensions of N = 8 SUGRA and N = 4 SYM 

Known bound for N = 4  
Bern, Dixon, Dunbar, Rozowsky, 
Perelstein; Howe, Stelle 
current trend for N = 8 

If N = 8 div. at L=7	


calculations: 

L = 7 lowest loop order for possible D = 4 divergence 
Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger;  
Björnsson, Green, Bossard, Howe, Stelle, Vanhove Kallosh, Ramond, Lindström, Berkovits, Grisaru, 

Siegel, Russo, Cederwall,  Karlsson, and more….  

1-2 loops: Green, Schwarz, Brink; Marcus and Sagnotti  
3-5 loops: Bern, Carrasco, Dixon, HJ, Kosower, Roiban 
6 loops: Bern, Carrasco, Dixon, Douglas, HJ, von Hippel 

Finite �
? �

Divergent�
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Known UV divergences in D>4 
Plot of critical dimensions of N = 8 SUGRA and N = 4 SYM 

Known bound for N = 4  
Bern, Dixon, Dunbar, Rozowsky, 
Perelstein; Howe, Stelle 
current trend for N = 8 

If N = 8 div. at L=7	


calculations: 

L = 7 lowest loop order for possible D = 4 divergence 
Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger;  
Björnsson, Green, Bossard, Howe, Stelle, Vanhove Kallosh, Ramond, Lindström, Berkovits, Grisaru, 

Siegel, Russo, Cederwall,  Karlsson, and more….  

1-2 loops: Green, Schwarz, Brink; Marcus and Sagnotti  
3-5 loops: Bern, Carrasco, Dixon, HJ, Kosower, Roiban 
6 loops: Bern, Carrasco, Dixon, Douglas, HJ, von Hippel 

26/5 or 24/5 ? 

Finite �
? �

Divergent�



Historical record – where is the N = 8 div. ? 
3 loops Conventional superspace power counting Green, Schwarz, Brink (1982) 

Howe and Stelle (1989) 
Marcus and Sagnotti (1985) 

5 loops Partial analysis of unitarity cuts; If N = 6 harmonic 
superspace exists; algebraic renormalisation!

Bern, Dixon, Dunbar,  
Perelstein, Rozowsky (1998) 
Howe and Stelle (2003,2009) 

6 loops If N = 7 harmonic superspace exists Howe and Stelle (2003) 

7 loops If N = 8 harmonic superspace exists;  
string theory U-duality analysis; 
lightcone gauge locality arguments; 
E7(7) analysis, unique 1/8 BPS candidate 

Grisaru and Siegel (1982); 
Green, Russo, Vanhove; Kallosh; 
Beisert, Elvang, Freedman, 
Kiermaier, Morales, Stieberger; 
Bossard, Howe, Stelle, Vanhove 

8 loops Explicit identification of potential susy invariant 
counterterm with full non-linear susy 

Howe and Lindström;   
Kallosh (1981) 

9 loops Assume Berkovits’ superstring non-renormalization 
theorems can be carried over to N = 8 supergravity 

Green, Russo, Vanhove (2006) 

Finite Identified cancellations in multiloop amplitudes; 
lightcone gauge locality and  E7(7), 
inherited from hidden N=4 SC gravity  

Bern, Dixon, Roiban (2006), 
Kallosh (2009–12),  
Ferrara, Kallosh, Van Proeyen (2012) 

note: above arguments/proofs/speculation are only lower bounds 
         à only an explicit calculation can prove the existence of a divergence! 
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Color-Kinematics Duality 
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Color-Kinematics Duality 
Yang-Mills theories are controlled by a kinematic Lie algebra 
 

• Amplitude represented by cubic graphs:   

Color & kinematic  
numerators satisfy  
same relations: 

Duality: color ↔ kinematics  

Jacobi 
identity 

antisymmetry 

propagators 

color factors 

numerators 

Bern, Carrasco, HJ   

fbac = � fabc
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Some details of color-kinematics duality 

can be checked for 4pt on-shell ampl. using Feynman rules 
Bern, Carrasco, HJ 

Example with  
two quarks: 

1.           contact interactions absorbed into cubic graphs 
•  by hand 1=s/s 
•  or by auxiliary field 

2.  Beyond 4-pts duality not automatic è Lagrangian reorganization 
3.  Known to work at tree level: all-n example  Kiermaier; Bjerrum-Bohr et al. 

4.  Enforces (BCJ) relations on partial amplitudes è (n-3)! basis 
5.  Same/similar relations control string theory S-matrix 

          Bjerrum-Bohr, Damgaard, Vanhove; Stieberger 
 

(Aµ)4

B ⇠ (Aµ)2



Gravity is a double copy 

•  The two numerators can belong to different theories: 

•  Gravity amplitudes obtained by replacing color with kinematics 

(N =4) × (N =4)   →     N =8 sugra 
(N =4) × (N =2)   →     N =6 sugra 

(N =0) × (N =0)   →     Einstein gravity + axion+ dilaton 

(N =4) × (N =0)   →     N =4 sugra 

BCJ 

similar to Kawai- 
Lewellen-Tye but  
works at loop level 

(N =4) × (matter)  →    N =4 matter 
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UV calculations using C-K duality 



C-K duality unifies 1,2-loop UV behavior�
1,2 loops N=4,5,6,8 SG are particularly easy to understand 

N=4 SYM numerator:   0 0

N=0,1,2,4 SYM integral:            finite         div.          div.          

β-fn vanish 

gauge theory  
renormalizablity 

⇥ ⇥ ⇥⇥

MSG =
X

i

ni ⇥ (SYM Integral)i Bern, Boucher-Veronneau, Dixon, HJ 

no loop momenta 

Bern, Davies,  
Dennen, Huang 
1209.2472 [hep-th] 

But N=4 matter diverges:    
Fischler; Fradkin, Tseytlin  

⇥ div�

�4



3-loop N =8 SG & N =4 SYM 
Color-kinematics dual form: Bern, Carrasco, HJ 

UV divergent in D=6: Bern, Carrasco,  Dixon, HJ, Roiban 

A(3)

���
pole

= 2g8stAtree(N3

c V
(A) + 12Nc(V

(A) + 3V (B)))⇥ (uTr[T a1T a2T a3T a4 ] + perms)

M(3)

���
pole

= 10
⇣
2

⌘
8

(stu)2M tree(V (A) + 3V (B))
V (A) + 3V (B) =

⇣3
6
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4-loops: 85 integral types �
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• 85 diagrams  
• Power counting manifest 
• N =4 & N =8 diverge in D=11/2 

V1 V2 V8

FIG. 17: The basic four-loop vacuum integrals V1, V2 and V8, to which all others can be reduced.

reveals that the leading UV behavior comes solely from integrals I80 through I85. These six
integrals have 11 internal propagators, and numerator factors that are independent of the
loop momentum. Therefore they diverge first in Dc = 11/2, which matches the expected
critical dimension, Dc = 4 + 6/L with L = 4.

In contrast, the 1PI integrals I1 through I52 have 13 internal propagators. Their nu-
merators would have to be quartic in the loop momenta for them to diverge in D = 11/2.
However, we note from eq. (3.14) that the master numerators N18 and N28 are quadratic in
the τij , and hence merely quadratic in the loop momenta. The Jacobi relations (A4) and
(A5) preserve this quadratic behavior for all numerators. Therefore integrals I1 through I52
are finite in Dc = 11/2. The 1PR integrals I53 through I79 have 12 internal propagators. If
their numerators were quadratic in the loop momenta, then they would diverge in D = 11/2.
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FIG. 1: Sample graphs for the five-loop four-point N = 4
sYM amplitude. The graph labels correspond to the ones
used in the ancillary file [23].

three-loop counterterm [20]; the coefficient of this coun-
terterm has recently been explicitly shown to vanish [12].
(See ref. [21] for a string-based argument.) This exhibits
better behavior than implied by known symmetry con-
siderations and is in line with cancellations suggested by
unitarity arguments [22]. In particular, it emphasizes the
importance of directly checking the amplitudes whether
eq. (1) holds for N = 8 supergravity at L = 5.
Our construction of the five-loop four-point amplitude

of N = 4 sYM theory organizes it in the form,

A
(5)
4 = ig12stAtree

4

∑

S4

416
∑

i=1

∫ 9
∏

j=5

dDlj
(2π)D

1

Si

Ci Ni
∏20

m=5 l
2
m

,

(2)
where the second sum runs over a set of 416 distinct
(non-isomorphic) graphs with only cubic (trivalent) ver-
tices. Some sample graphs are shown in fig. 1. The
first sum runs over all 24 permutations of external leg
labels indicated by S4. The symmetry factors Si remove
overcounts, including those arising from internal auto-
morphism symmetries with external legs fixed. Here we
absorb all contact terms (i.e. terms with fewer than the
maximum number of propagators) into graphs with only
cubic vertices, by multiplying and dividing by appropri-
ate propagators. We denote external momenta by ki for
i = 1, . . . , 4 and the five independent loop momenta by
lj for j = 5, . . . , 9. The remaining lj are linear combi-
nations of these. The color factors Ci of all graphs are
obtained by dressing every three-vertex in the graph with
a factor of f̃abc = Tr([T a, T b]T c), where the gauge group
generators T a are normalized as Tr(T aT b) = δab. The
gauge coupling is g and the crossing symmetric prefac-
tor stAtree

4 is in terms of the color-orderedD-dimensional
tree amplitude Atree

4 ≡ Atree
4 (1, 2, 3, 4) and s = (k1+k2)2

and t = (k2 + k3)2.
To construct the numerators Ni, we use the method of

maximal cuts [8], based on the unitarity method [24]. Ap-
plication of this method and various strategies for greatly
streamlining the construction of the numerators has been
described in considerable detail in ref. [6], so here we
give only a brief summary. The method works in D di-

N3MCNMCMC N2MC

FIG. 2: Sample Nk-maximal cuts for k = 0, 1, 2, 3. The ex-
posed lines are all cut.
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FIG. 3: Examples of simple cuts used to speed up the calcu-
lation. (a) is a two particle cut, (b) a box cut and (c) is a
sample application of BCJ amplitude relations. The exposed
lines are all cut.

mensions and can be used to obtain local expressions,
from which UV divergences can be straightforwardly ex-
tracted.
We start with an ansatz for the diagram numerators

containing free parameters to be determined by matching
against generalized unitarity cuts. Our ansatz is a poly-
nomial of degree four in the kinematic invariants, subject
to the power-counting constraint that no term has more
than six powers of loop momentum. We also demand
that each numerator respects the automorphism symme-
tries of the graph. Once a solution is found satisfying
a complete set of cut conditions, we have the integrand.
If an inconsistency is encountered, the ansatz must be
enlarged. We note that the solutions for numerators are
not unique and different choices can be mapped into each
other by generalized gauge transformations [9, 10, 25].
The parameters of the ansatz are determined from gen-

eralized unitarity cuts that decompose a loop integrand
into products of on-shell tree amplitudes summed over
all intermediate states,

∑

states A
tree
(1) A

tree
(2) · · ·Atree

(m). These
cuts are organized according to the number of cut prop-
agators that are replaced with on-shell conditions. We
start from the maximal cuts (MCs) where all 16 internal
propagators cut. After obtaining the MCs, we then con-
structs all next-to-maximal cuts (NMCs), with 15 cut
propagators. We continue this process, systematically
constructing analytic expressions for (next-to)k-maximal
cuts (NkMCs) with fewer and fewer imposed cut condi-
tions. For the five-loop four-point N = 4 sYM amplitude
this process terminates at k = 3, since the power count-
ing of the theory prevents numerator factors from can-
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mensions and can be used to obtain local expressions,
from which UV divergences can be straightforwardly ex-
tracted.
We start with an ansatz for the diagram numerators

containing free parameters to be determined by matching
against generalized unitarity cuts. Our ansatz is a poly-
nomial of degree four in the kinematic invariants, subject
to the power-counting constraint that no term has more
than six powers of loop momentum. We also demand
that each numerator respects the automorphism symme-
tries of the graph. Once a solution is found satisfying
a complete set of cut conditions, we have the integrand.
If an inconsistency is encountered, the ansatz must be
enlarged. We note that the solutions for numerators are
not unique and different choices can be mapped into each
other by generalized gauge transformations [9, 10, 25].
The parameters of the ansatz are determined from gen-

eralized unitarity cuts that decompose a loop integrand
into products of on-shell tree amplitudes summed over
all intermediate states,
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(m). These
cuts are organized according to the number of cut prop-
agators that are replaced with on-shell conditions. We
start from the maximal cuts (MCs) where all 16 internal
propagators cut. After obtaining the MCs, we then con-
structs all next-to-maximal cuts (NMCs), with 15 cut
propagators. We continue this process, systematically
constructing analytic expressions for (next-to)k-maximal
cuts (NkMCs) with fewer and fewer imposed cut condi-
tions. For the five-loop four-point N = 4 sYM amplitude
this process terminates at k = 3, since the power count-
ing of the theory prevents numerator factors from can-
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set of homogeneous consistency equations. The fact that
no positive definite integral is set to zero by this system
is a strong check on the calculation. These consistency
relations eliminate most of the vacuum diagrams. Two
examples are,

V (j) =
24

5
V (a) − 2V (d) ,

V (b) = 2V (c) + 35V (i) +
365

6
V (d) −

4175

162
V (e)

−
1045

18
V (f) −

9865

81
V (g) +

305

3
V (h) ,

where the labels correspond to the ones in fig. 4.
After using the consistency relations, the leading UV

divergence is remarkably simple and given by only three
vacuum integrals. For SU(Nc), it is

A
(5)
4

∣

∣

∣

div
= −

144

5
g12stAtree

4 N3
c

(

N2
c V

(a)

+ 12(V (a) + 2V (b) + V (c))
)

× (tf̃a1a2bf̃ ba3a4 + sf̃a2a3bf̃ ba4a1) . (3)

With the chosen normalization, the Wick rotated vacuum
integrals in eq. (3) are all positive definite, proving that
no further hidden cancellations remain at L = 5 in the
critical dimension for either leading- or subleading-color
contributions. Using FIESTA [28] we have numerically
evaluated the integrals giving,

V (a) =
0.331K

ε
, V (b) =

0.310K

ε
, V (c) =

0.291K

ε
,

where the dimensional regularization parameter is ε ≡
(26/5 − D)/2, K = 1/(4π)13 and numerical integration
uncertainties are below the displayed digits. It is inter-
esting that the ratio between the subleading and leading
contributions 45.0/N2

c is rather close to the three- and
four-loop ratios, 43.3/N2

c and 44.4/N2
c [6]. A striking

feature of the result (3) is that the divergence does not
contain terms beyond O(1/N2

c ) suppression, nor does it
contain double-trace contributions when converted to an
SU(Nc) color-trace representation, in line with expecta-
tions from lower loops [6]. The second of these features
has already been discussed in refs. [6, 29]. Furthermore,
the three integrals and their relative coefficients have a
remarkable similarity with the corresponding ones at four
loops, as seen by comparing to eq. (5.33) of ref. [6]. At
lower loops, exactly the same combination of integrals
appearing in the subleading-color contributions to the
N = 4 sYM divergences appear in the corresponding
ones of N = 8 supergravity [6]. A natural conjecture is
that the same holds at five loops, so that the two theories
share the same critical dimension, D = 26/5.
In summary, the five-loop amplitude we have con-

structed here offers detailed information on the struc-
ture of the nonplanar sector of N = 4 sYM theory. As

a first application, we have shown that simple patterns
for divergences in the dimension where they first appear
continue to hold through five loops; this hints that the di-
vergences are controlled by a deep structure of the theory.
Our construction of the five-loop four-point amplitude is
an excellent starting point to try to find a representation
exhibiting the duality between color and kinematics. We
expect that the results presented here will be crucial in-
put for obtaining corresponding supergravity amplitudes
and for studying their UV behavior.
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put for obtaining corresponding supergravity amplitudes
and for studying their UV behavior.
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UV calc. makes it to Hollywood  

The Parking Spot Escalation 

with some help from Sheldon Cooper… 



N =8 SG 5-loop Status 

Construction using only unitarity difficult 
 

Bern, Carrasco, HJ, Roiban 

• Works for 5-loop N=4 SYM 
• 5-loop SG too difficult this way 
         (ansatz: billions of terms)   

H. Johansson SUSY 2013 

Only way: use color-kinematics duality 
 

• 416 + 336 = 752 integral topologies 
• Minimal ansatz: 1112 free parameters 
• 2500 functional Jacobi eqns        20 000 000 linear eqns 
• Solution exists: 29 free parameters 
• Unfortunately, not all unitarity cuts work, there’s some glitch 
• Working with enlarged Ansätze … stay tuned for results!  

nSYM ⇠ 8000 terms

nSG ⇠ (8000)2/2

⇠ 30 000 000 terms

⇠

In principle: need only reorganize 5-loop N=4 SYM 



SYM         SG	

            ?	


3 loops, D=6:	

	


4 loops, D=11/2:	

	
SYM         SG	


SYM         SG	
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UV div. ↔ ubiquitous Casimir   

5 loops, D=26/5:	

	


V1 V2 V8

FIG. 17: The basic four-loop vacuum integrals V1, V2 and V8, to which all others can be reduced.

reveals that the leading UV behavior comes solely from integrals I80 through I85. These six
integrals have 11 internal propagators, and numerator factors that are independent of the
loop momentum. Therefore they diverge first in Dc = 11/2, which matches the expected
critical dimension, Dc = 4 + 6/L with L = 4.

In contrast, the 1PI integrals I1 through I52 have 13 internal propagators. Their nu-
merators would have to be quartic in the loop momenta for them to diverge in D = 11/2.
However, we note from eq. (3.14) that the master numerators N18 and N28 are quadratic in
the τij , and hence merely quadratic in the loop momenta. The Jacobi relations (A4) and
(A5) preserve this quadratic behavior for all numerators. Therefore integrals I1 through I52
are finite in Dc = 11/2. The 1PR integrals I53 through I79 have 12 internal propagators. If
their numerators were quadratic in the loop momenta, then they would diverge in D = 11/2.
However, it is easy to see from eqs. (A5) and (B1) that their numerators are all linear in the
loop momenta.

Integrals I80 through I85 reduce easily to vacuum integrals in the limit that the external
momenta vanish. The planar integrals I80 and I83 reduce to the vacuum integral V1 depicted
in fig. 17. While integrals I81 and I84 are nonplanar as four-point graphs, in the vacuum
limit they reduce to the planar vacuum integral V2. Finally, integrals I82 and I85 reduce to
the nonplanar vacuum integral V8.

As was the case at three loops, the color factors for the leading UV graphs are related
by color Jacobi identities. In this case we can subtract, for example, C81 from C80, and use
a Jacobi identity operating on the box at the top center of the graphs in fig. 11. Then we
reduce the resulting triangle subgraphs iteratively, to find

C80,83 − 2N4
c f̃

a1a2bf̃ ba3a4 = C81 = C82 = C84 = C85 . (4.13)

Again, the subleading-color parts of all contributing color factors are equal.
From eq. (A5), the numerator factors obey N80 = N81 = N82 and N83 = N84 = N85.

On the other hand, the combinatorial factor of I81 in eq. (3.3) is twice as large as those
for I80 and I82, and similarly for I84 with respect to I83 and I85. Taking into account both
combinatorial and numerator factors, the contribution of I83 is −9

8 times that of I80, and
similarly for the other two pairs of graphs. Combining all terms and switching to the color-
trace basis, we find that the UV divergence in the critical dimension D = 11/2 is given
by,

A(4)
4 (1, 2, 3, 4)

∣∣∣
SU(Nc)

pole
= −6 g10KN2

c

(
N2

c V1 + 12 (V1 + 2 V2 + V8)
)

(4.14)

×
(
s ( Tr1324 + Tr1423) + t ( Tr1243 + Tr1342) + u ( Tr1234 + Tr1432)

)
,

33
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V1 + 2V2 + V8

V (a) + 2V (b) + V (c)

V (A) + 3V (B)

V (A) V (B)
= V (A) + 2V (B) + V (B)

⇠ (dabcd)2

related to diagrams in the 
quartic Casimir 
 

$

$

$

Pattern à reason to be optimistic  
About  UV behavior at 5 loops ! 



Summary 
!   Explicit calculations in N = 8 SUGRA up to four loops show that the 

power counting exactly follows that of N = 4 SYM -- a finite theory 
 

!   5 loop calculation in D=24/5 probes the potential 7-loop  D=4 
counterterm -- will provide critical input to the N = 8 question !  

!   Color-Kinematics duality allows for gravity calculations for multiloop 
multipoint amplitudes -- greatly facilitating UV analysis in gravity. 

!   Numbers in UV divergences of N =8 SUGRA and           N =4 SYM 
coincide, suggesting a deeper connection between the theories 

 

!   Stay tuned for the 5-loop SUGRA result… 
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