Towards Determining the UV Behavior of Maximal Supergravity

Henrik Johansson CERN

Aug 29, 2013
SUSY 2013, ICTP Trieste

Based on work with: Zvi Bern, John Joseph Carrasco,
Lance Dixon, Radu Roiban

Text-book: perturbative gravity is complicated !

de Donder gauge:

$$
\mathcal{L}=\frac{2}{\kappa^{2}} \sqrt{g} R, \quad g_{\mu \nu}=\eta_{\mu \nu}+\kappa h_{\mu \nu}
$$

higher order vertices...

H. Johansson SUSY 2013

On-shell simplifications

 Graviton plane wave:

$$
\varepsilon^{\mu}(p) \varepsilon^{\nu}(p) e^{i p \cdot x}
$$

${ }^{\imath}$ Yang-Mills polarization
On-shell 3-graviton vertex:

Gravity scattering amplitude:

Gravity processes $=$ squares of gauge theory ones - entire S-matrix Bern, Carrasco, HJ [BCJ]

Gravity should be simple off shell

Yang-Mills \rightarrow cubic \quad very schematically: $\quad \mathcal{L}_{\text {YM }} \sim A \square A+\boldsymbol{\partial} A^{3}$

Einstein gravity \rightarrow cubic \quad very schematically: $\quad \mathcal{L}_{\mathrm{G}} \sim h \square h+\partial^{2} h^{3}$

And gravity should be a double copy of a YM theory:
Bern, Carrasco, HJ

$$
\begin{aligned}
h^{\mu \nu} & \sim A^{\mu} A^{\nu} \\
V_{\mathrm{G}}\left(k_{1}, k_{2}, k_{3}\right) & =V_{\mathrm{YM}}\left(k_{1}, k_{2}, k_{3}\right) V_{\mathrm{YM}}\left(k_{1}, k_{2}, k_{3}\right)
\end{aligned}
$$

UV problem = basic power counting

Naively expect gravity to behave worse than Yang-Mills

Gravity: non-renormalizable dimensionful coupling

For finite gravity \rightarrow vast cancellations needed $\sim\left(p^{\mu}\right)^{2 L} \rightarrow\left(k^{\mu}\right)^{2 L}$ seems implausible, but exists for $N=8$ SG in all known ampl's.

Outline

- UV status of $N=8$ SUGRA
- Duality between color and kinematics
- Double-copy structure of gravity
- Ability to calculate
- Amplitude UV behavior from duality
- Current 5-loop SUGRA progress
- Conclusion

SUGRA status on one page

Facts:

- No $D=4$ divergence of pure SG has been found to date.
- Susy forbids 1,2 loop div. R^{2}, R^{3} Ferrara, Zumino, Deser, Kay, Stelle, Howe, Lindström,
- Pure gravity 1-loop finite, 2-loop divergent Goroff \& Sagnotti
- With matter: 1-loop divergent 't Hooft \& Veltman
- Naively susy allows 3-loop div. R^{4}
- $\mathcal{N}=8$ SG and $\mathcal{N}=4$ SG 3-loop finite!

Bern, Carrasco, Dixon, HJ, Kosower, Roiban, Davies, Dennen, Huang

- $\mathcal{N}=8$ SG: no divergence before 7 loops
- $\begin{gathered}\text { Marcus, Sagnotti, Bern, Dixon, Dunbar, } \\ \text { M }\end{gathered}$ Perelstein, Rozowsky, Carrasco, HJ, Kosower, Roiban
- 7-loop div. in $D=4$ implies a 5-loop div.
 in $D=24 / 5$ - calculation in progress!

Why is it interesting ?

- If $\mathcal{N}=8 \mathrm{SG}$ is perturbatively finite, why is it interesting ?
- It better be finite for a good reason!
- Hidden new symmetry, for example
- Understanding the mechanism might open a host of possibilities
- Any indication of hidden structures yet?
- Gravity is a double copy of gauge theories
- Color-Kinematics: kinematics = Lie algebra Bern, Carrasco, HJ
- Constraints from E-M duality ? Kallosh,....
- Hidden superconformal $N=4$ SUGRA ?

Ferrara, Kallosh, Van Proeyen

- Extended $N=4$ superspace ? Bossard, Howe, Stelle

Known UV divergences in D>4

Plot of critical dimensions of $\mathcal{N}=8$ SUGRA and $\mathcal{N}=4$ SYM

Known UV divergences in D>4

Plot of critical dimensions of $\mathcal{N}=8$ SUGRA and $\mathcal{N}=4$ SYM

Known UV divergences in D>4

Plot of critical dimensions of $\mathcal{N}=8$ SUGRA and $\mathcal{N}=4$ SYM

Historical record - where is the $\mathcal{N}=8$ div. ?

3 loops	Conventional superspace power counting	Green, Schwarz, Brink (1982) Howe and Stelle (1989) Marcus and Sagnotti (1985)
5 loops	Partial analysis of unitarity cuts; If $\mathcal{N}=6$ harmonic superspace exists; algebraic renormalisation	Bern, Dixon, Dunbar, Perelstein, Rozowsky (1998) Howe and Stelle (2003,2009)
6 loops	If $\mathcal{N}=7$ harmonic superspace exists	Howe and Stelle (2003)
7 loops	If $\mathcal{N}=8$ harmonic superspace exists; string theory U-duality analysis; lightcone gauge locality arguments; $E_{7(7)}$ analysis, unique 1/8 BPS candidate	Grisaru and Siegel (1982); Green, Russo, Vanhove; Kallosh; Beisert, Ivang, Freedman, Kiermaier, Morales, Stieberger; Bossard, Howe, Stelle, Vanhove
8 loops	Explicit identification of potential susy invariant counterterm with full non-linear susy	Howe and Lindström; Kallosh (1981)
9 loops	Assume Berkovits' superstring non-renormalization theorems can be carried over to $\mathcal{N}=8$ supergravity	Green, Russo, Vanhove (2006)
Finite	Identified cancellations in multiloop amplitudes; lightcone gauge locality and E 7(7), inherited from hidden N=4 SC gravity	Bern, Dixon, Roiban (2006), Kallosh (2009-12), Ferrara, Kallosh, Van Proeyen (2012)

note: above arguments/proofs/speculation are only lower bounds \rightarrow only an explicit calculation can prove the existence of a divergence!

Color-Kinematics Duality

Color-Kinematics Duality

Yang-Mills theories are controlled by a kinematic Lie algebra

- Amplitude represented by cubic graphs:

$$
\mathcal{A}_{m}^{(L)}=\sum_{i \in \Gamma_{3}} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} c_{i} \curvearrowleft \text { color factors }}{p_{i_{1}}^{2} p_{i_{2}}^{2} p_{i_{3}}^{2} \cdots p_{i_{l}}^{2} \longleftarrow \text { propagators }}
$$

Color \& kinematic numerators satisfy same relations:

Duality: color \leftrightarrow kinematics Bern, Carrasco, HJ
H. Johansson SUSY 2013

Some details of color-kinematics duality

can be checked for 4 pt on-shell ampl. using Feynman rules

Example with two quarks:

$$
\begin{aligned}
\varepsilon_{2} \cdot\left(\bar{u}_{1} V u_{3}\right) \cdot \varepsilon_{4} & =\bar{u}_{1 \neq 4} \phi_{t} \not_{2} u_{3}-\bar{u}_{1 \neq 2} \phi_{s} \ddagger_{4} u_{3} \\
f^{c b a} T_{i k}^{c} & =T_{i j}^{b} T_{j k}^{a}-T_{i j}^{a} T_{j k}^{b}
\end{aligned}
$$

1. $\left(A^{\mu}\right)^{4}$ contact interactions absorbed into cubic graphs

- by hand $1=s / s$
- or by auxiliary field $B \sim\left(A^{\mu}\right)^{2}$

2. Beyond 4-pts duality not automatic \rightarrow Lagrangian reorganization
3. Known to work at tree level: all-n example Kiermaier; Bjerrum-Bohr et al.
4. Enforces (BCJ) relations on partial amplitudes \rightarrow ($n-3$)! basis
5. Same/similar relations control string theory S-matrix

Gravity is a double copy

- Gravity amplitudes obtained by replacing color with kinematics

$$
\begin{aligned}
\mathcal{A}_{m}^{(L)} & =\sum_{i \in \Gamma_{3}} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} c_{i}}{p_{i_{1}}^{2} p_{i_{2}}^{2} p_{i_{3}}^{2} \cdots p_{i_{l}}^{2}} \\
\mathcal{M}_{m}^{(L)} & =\sum_{i \in \Gamma_{3}} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} \tilde{n}_{i}}{p_{i_{1}}^{2} p_{i_{2}}^{2} p_{i_{3}}^{2} \cdots p_{i_{l}}^{2}}
\end{aligned}
$$

- The two numerators can belong to different theories:

$$
\begin{array}{ccc}
n_{i} & \tilde{n}_{i} & \\
(\mathcal{N}=4) \times(\mathcal{N}=4) & \rightarrow & \mathcal{N}=8 \text { sugra }
\end{array} \quad \begin{aligned}
& \text { similar to Kawai- } \\
& \text { Lewellen-Tye but } \\
& \text { works at loop level }
\end{aligned}
$$

UV calculations using C-K duality

C-K duality unifies 1,2-loop UV behavior

1,2 loops $N=4,5,6,8$ SG are particularly easy to understand

$$
\begin{aligned}
& \mathcal{M}^{\mathrm{SG}}=\sum n_{i} \times(\mathrm{SYM} \text { Integral })_{i} \quad \text { Bern, Boucher-Veronneau, Dixon, нJ } \\
& \text { no loop momenta }
\end{aligned}
$$

But $N=4$ matter diverges:
Fischler; Fradkin, Tseytlin

Bern, Davies, Dennen, Huang 1209.2472 [hep-th]

3-loop $\mathcal{N}=8$ SG \& $\mathcal{N}=4$ SYM

Color-kinematics dual form:

Bern, Carrasco, HJ

$$
N^{(\mathrm{e})}=s\left(\tau_{45}+\tau_{15}\right)+\frac{1}{3}(t-s)\left(s+\tau_{15}-\tau_{25}\right)
$$

$$
\tau_{i j}=2 k_{i} \cdot l_{j}
$$

(d)

(j)

UV divergent in $D=6$: Bern, Carrasco, Dixon, HJ , Roiban

$$
\left.\mathcal{A}^{(3)}\right|_{\text {pole }}=2 g^{8} s t A^{\text {tree }}\left(N_{c}^{3} V^{(\mathrm{A})}+12 N_{c}\left(V^{(\mathrm{A})}+3 V^{(\mathrm{B})}\right)\right) \times\left(u \operatorname{Tr}\left[T^{a_{1}} T^{a_{2}} T^{a_{3}} T^{a_{4}}\right]+\text { perms }\right)
$$

$$
\left.\mathcal{M}^{(3)}\right|_{\text {pole }}=10\left(\frac{\kappa}{2}\right)^{8}(s t u)^{2} M^{\text {tree }}\left(\underline{V^{(\mathrm{A})}}+3 V^{(\mathrm{B})}\right)
$$

4-loops: 85 integral types

 (2) (1) (1) (1) (2) (1) (2) 田)

4-loops $\mathcal{N}=4$ SYM and $\mathcal{N}=8$ SG

Bern, Carrasco, Dixon, HJ, Roiban 1201.5366

- 85 diagrams
- Power counting manifest
$\bullet \mathcal{N}=4 \& \mathcal{N}=8$ diverge in $D=11 / 2$

$$
N_{6}^{\mathrm{SYM}}=\frac{1}{2} s_{12}^{2}\left(\tau_{45}-\tau_{35}-s_{12}\right)
$$

$$
N_{6}^{\mathrm{SG}}=\left[\frac{1}{2} s_{12}^{2}\left(\tau_{45}-\tau_{35}-s_{12}\right)\right]^{2}
$$

(6)

$$
\tau_{i j}=2 k_{i} \cdot l_{j}
$$

$$
\left.\mathcal{A}_{4}^{(4)}\right|_{\text {pole }}=-6 g^{10} s t A^{\text {tree }} N_{c}^{2}\left(N_{c}^{2} V_{1}+12\left(\underline{V_{1}+2 V_{2}+V_{8}}\right)\right) \times\left(u \operatorname{Tr}_{1234}+\text { perms }\right)
$$

$$
\left.\mathcal{M}_{4}^{(4)}\right|_{\text {pole }}=-\frac{23}{8}\left(\frac{\kappa}{2}\right)^{10} s t u\left(s^{2}+t^{2}+u^{2}\right)^{2} M^{\text {tree }}\left(\underline{V_{1}+2 V_{2}+V_{8}}\right)
$$

5-loop status

H. Johansson SUSY 2013

$\mathcal{N}=4$ SYM 5-loop Amplitude

$\mathcal{N}=4$ SYM important stepping stone to $\mathcal{N}=8$ SG
1207.6666 [hep-th]

Bern, Carrasco, HJ, Roiban

- 416 integral topologies:

- Used maximal cut method

Bern, Carrasco, HJ, Kosower

- UV divergence in $D=26 / 5$:

(a)

$$
\begin{aligned}
\left.\mathcal{A}_{4}^{(5)}\right|_{\mathrm{div}}=-\frac{144}{5} g^{12} s t A_{4}^{\text {tree }} & N_{c}^{3}\left(N_{c}^{2} V^{(\mathrm{a})}+12\left(V^{(\mathrm{a})}+2 V^{(\mathrm{b})}+V^{(\mathrm{c})}\right)\right) \\
& \times \operatorname{Tr}\left[T^{a_{1}} T^{a_{2}} T^{a_{3}} T^{a_{4}}\right]
\end{aligned}
$$

H. Johansson SUSY 2013

UV calc. makes it to Hollywood

The Parking Spot Escalation
with some help from Sheldon Cooper...

$\mathcal{N}=8$ SG 5-loop Status

Construction using only unitarity difficult

- Works for 5-loop N=4 SYM
-5-loop SG too difficult this way (ansatz: billions of terms)

$$
\begin{aligned}
n^{\mathrm{SYM}} & \sim 8000 \text { terms } \\
n^{\mathrm{SG}} & \sim(8000)^{2} / 2 \\
& \sim 30000000 \text { terms }
\end{aligned}
$$

Only way: use color-kinematics duality
In principle: need only reorganize 5-loop $\mathcal{N}=4$ SYM Bern, Carrasco, HJ, Roiban

- $416+336=752$ integral topologies
- Minimal ansatz: 1112 free parameters
- 2500 functional Jacobi eqns ~ 20000000 linear eqns
- Solution exists: 29 free parameters
- Unfortunately, not all unitarity cuts work, there's some glitch
- Working with enlarged Ansätze ... stay tuned for results!

UV div. \leftrightarrow ubiquitous Casimir

$$
5 \text { loops, } D=26 / 5: \quad V^{(\mathrm{a})}+2 V^{(\mathrm{b})}+V^{(\mathrm{c})}
$$ SYM $\underset{?}{\underset{?}{\leftrightarrows}} \mathrm{SG}$

4 loops, $D=11 / 2$: $\underline{\underline{V_{1}+2 V_{2}+} V_{8}}$ SYM \longleftrightarrow SG

related to diagrams in the quartic Casimir

Summary

- Explicit calculations in $\mathcal{N}=8$ SUGRA up to four loops show that the power counting exactly follows that of $\mathcal{N}=4$ SYM - a finite theory
- 5 loop calculation in $D=24 / 5$ probes the potential 7-loop $D=4$ counterterm - will provide critical input to the $\mathcal{N}=8$ question!
- Color-Kinematics duality allows for gravity calculations for multiloop multipoint amplitudes - greatly facilitating UV analysis in gravity.
- Numbers in UV divergences of $\mathcal{N}=8$ SUGRA and $1 / N_{c}^{2} \mathcal{N}=4$ SYM coincide, suggesting a deeper connection between the theories
- Stay tuned for the 5-loop SUGRA result...

THANK YOU!

