Degenerate scalar and pseudoscalar Higgs bosons near 125 GeV in NUHM-CNMSSM

(based on 1305.0591, to appear in PRD)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Shoaib Munir

with L. Roszkowski and S. Trojanowski at NCBJ, Warsaw, Poland

SUSY 2013, Trieste, Italy

August 28, 2013

Outline

Light NMSSM pseudoscalar

Outline

Light NMSSM pseudoscalar

Production at the LHC

Outline

Light NMSSM pseudoscalar

Production at the LHC

CNMSSM-NUHM

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Outline

Light NMSSM pseudoscalar

Production at the LHC

CNMSSM-NUHM

Model predictions

A \sim 125 GeV a_1

• A light singletlike pseudoscalar, a_1 , achievable in the NMSSM

$$m_{a_1}^2\simeq -3\kappa s A_\kappa^{\rm SUSY}-\frac{M_{P,12}^4}{M_{P,11}^2}$$

 $M_{P,11}^2 \simeq \mu_{ ext{eff}} (A_\lambda^{ ext{SUSY}} + \kappa s) tan eta, \ M_{P,12}^2 \simeq \lambda (A_\lambda^{ ext{SUSY}} - 2\kappa s) v$

\rightarrow Relative signs of $\mu_{\rm eff}$ and ${\it A}_{\kappa}$ crucial

 \rightarrow Dependence on the sign and magnitude of A-terms through RGEs

Mass degeneracy with the SM-like h₁ would imply

$$\begin{split} R_{\gamma\gamma}^{Y}(\text{obs}) &= R_{\gamma\gamma}^{Y}(h_{1}) + R_{\gamma\gamma}^{Y}(a_{1}) \simeq 1 + R_{\gamma\gamma}^{Y}(a_{1});\\ R_{WW/ZZ}^{Y}(\text{obs}) &= R_{WW/ZZ}^{Y}(h_{1}) \simeq 1 \end{split}$$

where $R_X^Y(h_i) \equiv \frac{\sigma(Y \to h_i)}{\sigma(Y \to h_{\rm SM})} \times \frac{BR(h_i \to X)}{BR(h_{\rm SM} \to X)} \approx C_{a_1}^2(Y) C_{a_1}^2(X) \frac{\Gamma_{\rm bSM}^{\rm total}}{\Gamma_{a_1}^{\rm total}}$

A \sim 125 GeV a_1

• A light singletlike pseudoscalar, a_1 , achievable in the NMSSM

$$m_{a_1}^2\simeq -3\kappa s A_\kappa^{\rm SUSY}-\frac{M_{P,12}^4}{M_{P,11}^2}$$

 $M_{P,11}^2 \simeq \mu_{ ext{eff}} (A_{\lambda}^{ ext{SUSY}} + \kappa s) tan eta, \ M_{P,12}^2 \simeq \lambda (A_{\lambda}^{ ext{SUSY}} - 2\kappa s) v$

- \rightarrow Relative signs of $\mu_{\rm eff}$ and ${\it A}_{\kappa}$ crucial
- \rightarrow Dependence on the sign and magnitude of A-terms through RGEs

Mass degeneracy with the SM-like h₁ would imply

$$\begin{split} R_{\gamma\gamma}^{Y}(\text{obs}) &= R_{\gamma\gamma}^{Y}(h_{1}) + R_{\gamma\gamma}^{Y}(a_{1}) \simeq \mathbf{1} + R_{\gamma\gamma}^{Y}(a_{1});\\ R_{WW/ZZ}^{Y}(\text{obs}) &= R_{WW/ZZ}^{Y}(h_{1}) \simeq \mathbf{1} \end{split}$$
where $R_{X}^{Y}(h_{i}) \equiv \frac{\sigma(Y \rightarrow h_{i})}{\sigma(Y \rightarrow h_{\text{SM}})} \times \frac{BR(h_{i} \rightarrow X)}{BR(h_{\text{SM}} \rightarrow X)} \approx C_{a_{1}}^{2}(Y) C_{a_{1}}^{2}(X) \frac{\Gamma_{h_{\text{SM}}}^{\text{total}}}{\Gamma_{\text{otal}}^{\text{total}}}$

$\gamma\gamma$ decay of a light a_1

The effective coupling of a_i to two photons

$$C_{a_{i}}^{\text{eff}}(\gamma\gamma) \simeq \frac{g_{a_{1}\chi_{1}^{\pm}\chi_{1}^{\pm}}}{\sqrt{\sqrt{2}G_{F}}} m_{\chi_{1}^{\pm}} A_{1/2}^{a_{i}}(\tau_{i}); \quad \tau_{i} = \frac{m_{a_{i}}^{2}}{4m_{\chi_{1}^{\pm}}^{2}} \to A_{1/2}^{a_{i}}(\tau_{i}) \simeq 1$$

 $\sim C_{h_{\rm SM}}^{\rm eff}(\gamma\gamma) \text{ in the presence of a higgsino-like chargino}$ $g_{a_i\chi_1^{\pm}\chi_1^{\pm}} = i \Big[\frac{\lambda}{\sqrt{2}} P_{i3} \sin \theta_U \sin \theta_V - \frac{g_2}{\sqrt{2}} (P_{i2} \cos \theta_U \sin \theta_V + P_{i1} \sin \theta_U \cos \theta_V) \Big]$

• Singlet $a_1 \Rightarrow P_{13} \simeq 1$ and higgsino $\chi_1^{\pm} \Rightarrow \sin \theta_{U,V} \simeq 1$ yield

$$C_{a_1}(\gamma\gamma)\simeq\lambda imesrac{130~{
m GeV}}{m_{\chi_1^\pm}}$$

$\gamma\gamma$ decay of a light a_1

The effective coupling of a_i to two photons

$$C_{a_{i}}^{\text{eff}}(\gamma\gamma) \simeq \frac{g_{a_{1}\chi_{1}^{\pm}\chi_{1}^{\pm}}}{\sqrt{\sqrt{2}G_{F}}} m_{\chi_{1}^{\pm}} A_{1/2}^{a_{i}}(\tau_{i}); \quad \tau_{i} = \frac{m_{a_{i}}^{2}}{4m_{\chi_{1}^{\pm}}^{2}} \to A_{1/2}^{a_{i}}(\tau_{i}) \simeq 1$$

 $\sim C_{h_{\rm SM}}^{\rm eff}(\gamma\gamma) \text{ in the presence of a higgsino-like chargino}$ $g_{a_i\chi_1^{\pm}\chi_1^{\pm}} = i \Big[\frac{\lambda}{\sqrt{2}} P_{i3} \sin \theta_U \sin \theta_V - \frac{g_2}{\sqrt{2}} (P_{i2} \cos \theta_U \sin \theta_V + P_{i1} \sin \theta_U \cos \theta_V) \Big]$

• Singlet $a_1 \Rightarrow P_{13} \simeq 1$ and higgsino $\chi_1^{\pm} \Rightarrow \sin \theta_{U,V} \simeq 1$ yield

$$C_{a_1}(\gamma\gamma)\simeq\lambda imesrac{130~{
m GeV}}{m_{\chi_1^\pm}}$$

・ロト・4回・4回・4回・4回・4日・

$\gamma\gamma$ decay of a light a_1

The effective coupling of a_i to two photons

$$C_{a_{i}}^{\text{eff}}(\gamma\gamma) \simeq \frac{g_{a_{1}\chi_{1}^{\pm}\chi_{1}^{\pm}}}{\sqrt{\sqrt{2}G_{F}}} m_{\chi_{1}^{\pm}} A_{1/2}^{a_{i}}(\tau_{i}); \quad \tau_{i} = \frac{m_{a_{i}}^{2}}{4m_{\chi_{1}^{\pm}}^{2}} \to A_{1/2}^{a_{i}}(\tau_{i}) \simeq 1$$

 $ightarrow \sim C_{h_{
m SM}}^{
m eff}(\gamma\gamma)$ in the presence of a higgsino-like chargino

$$g_{a_i\chi_1^{\pm}\chi_1^{\pm}} = i \left[\frac{\lambda}{\sqrt{2}} P_{i3} \sin \theta_U \sin \theta_V - \frac{g_2}{\sqrt{2}} (P_{i2} \cos \theta_U \sin \theta_V + P_{i1} \sin \theta_U \cos \theta_V) \right]$$

• Singlet $a_1 \Rightarrow P_{13} \simeq 1$ and higgsino $\chi_1^{\pm} \Rightarrow \sin \theta_{U,V} \simeq 1$ yield

$$C_{a_1}(\gamma\gamma) \simeq \lambda imes rac{130 ext{ GeV}}{m_{\chi_1^\pm}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Associated production with $b\bar{b}$

Signal rate suppressed in the gluon fusion production mode!

$$R_{\gamma\gamma}^{gg}(a_1) = C_{a_1}^2(gg) C_{a_1}^2(\gamma\gamma) \frac{\Gamma_{h_{\rm SM}}^{\rm total}}{\Gamma_{a_1}^{\rm total}}$$

• Potentially enhanced in the $b\bar{b}h$ production mode instead

$$R_{\gamma\gamma}^{bb}(a_1) \simeq \left|rac{(A_\lambda^{
m SUSY} - 2\kappa s)v}{\mu(A_\lambda^{
m SUSY} + \kappa s)}
ight|^2 \,\lambda^4 \left(rac{130{
m GeV}}{m_{\chi_1^\pm}}
ight)^2 \left(rac{1}{\Gamma_{a_1}^{
m total}/\Gamma_{h_{
m SM}}^{
m total}}
ight)$$

Signal rates in the bb and \(\tau^+\tau^-\) channels also enhanced\)

$$R_{b\bar{b}/\tau^{+}\tau^{-}}^{b\bar{b}}(a_{1}) \simeq \left|\frac{\lambda(A_{\lambda}^{\mathrm{SUSY}} - 2\kappa s)v}{\mu(A_{\lambda}^{\mathrm{SUSY}} + \kappa s)}\right|^{4} \left(\frac{1}{\Gamma_{a_{1}}^{\mathrm{total}}/\Gamma_{h_{\mathrm{SM}}}^{\mathrm{total}}}\right)$$

Associated production with $b\bar{b}$

Signal rate suppressed in the gluon fusion production mode!

$$R_{\gamma\gamma}^{gg}(a_1) = C_{a_1}^2(gg) C_{a_1}^2(\gamma\gamma) \frac{\Gamma_{h_{\rm SM}}^{\rm total}}{\Gamma_{a_1}^{\rm total}}$$

• Potentially enhanced in the $b\bar{b}h$ production mode instead

$$R_{\gamma\gamma}^{bb}(a_1) \simeq \left|rac{(A_\lambda^{
m SUSY} - 2\kappa s)v}{\mu(A_\lambda^{
m SUSY} + \kappa s)}
ight|^2 \,\lambda^4 \left(rac{130 {
m GeV}}{m_{\chi_1^\pm}}
ight)^2 \left(rac{1}{\Gamma_{a_1}^{
m total}/\Gamma_{h_{
m SM}}^{
m total}}
ight)$$

Signal rates in the bb and $\tau^+\tau^-$ channels also enhanced

$$R_{b\bar{b}/\tau^{+}\tau^{-}}^{b\bar{b}}(a_{1}) \simeq \left|\frac{\lambda(A_{\lambda}^{\rm SUSY} - 2\kappa s)v}{\mu(A_{\lambda}^{\rm SUSY} + \kappa s)}\right|^{4} \left(\frac{1}{\Gamma_{a_{1}}^{\rm total}/\Gamma_{b_{\rm SM}}^{\rm total}}\right)$$

Associated production with $b\bar{b}$

Signal rate suppressed in the gluon fusion production mode!

$$R_{\gamma\gamma}^{gg}(a_1) = C_{a_1}^2(gg) C_{a_1}^2(\gamma\gamma) \frac{\Gamma_{h_{\rm SM}}^{\rm total}}{\Gamma_{a_1}^{\rm total}}$$

• Potentially enhanced in the $b\bar{b}h$ production mode instead

$$R_{\gamma\gamma}^{bb}(a_1) \simeq \left|rac{(A_\lambda^{
m SUSY} - 2\kappa s)v}{\mu(A_\lambda^{
m SUSY} + \kappa s)}
ight|^2 \,\lambda^4 \left(rac{130 {
m GeV}}{m_{\chi_1^\pm}}
ight)^2 \left(rac{1}{\Gamma_{a_1}^{
m total}/\Gamma_{h_{
m SM}}^{
m total}}
ight)$$

- Signal rates in the $b\bar{b}$ and $au^+ au^-$ channels also enhanced

$$R^{bb}_{bar{b}/ au^+ au^-}(a_1) \simeq \left|rac{\lambda(A^{
m SUSY}_\lambda - 2\kappa s) v}{\mu(A^{
m SUSY}_\lambda + \kappa s)}
ight|^4 \left(rac{1}{\Gamma^{
m total}_{a_1}/\Gamma^{
m total}_{b_{
m SM}}}
ight)$$

Assuming 'full' unification at the GUT-scale leads to

 $p_i = \{m_0, m_{1/2}, A_0, \lambda\}$

- ► CNMSSM-NUHM: m_S , m_{H_u} , $m_{H_d} \neq m_0$; $A_\lambda = A_\kappa \neq A_0 \rightarrow p_i + \{ \tan \beta, \kappa, \mu_{\text{eff}}, A_\lambda \}$
- Model scanned using NMSSMTools imposing constraints from b-physics, LHC SUSY searches, RD measurements and D³M
- ▶ Required $122 \, {
 m GeV} \le m_{h_1/a_1} \le 130 \, {
 m GeV}$ and $R_X^{bb}(h_1) \simeq 1$
- Three regions distinguishable by χ_1^0 composition found

Assuming 'full' unification at the GUT-scale leads to

 $p_i = \{m_0, m_{1/2}, A_0, \lambda\}$

- ► CNMSSM-NUHM: m_S , m_{H_u} , $m_{H_d} \neq m_0$; $A_\lambda = A_\kappa \neq A_0 \rightarrow p_i + \{\tan \beta, \kappa, \mu_{\text{eff}}, A_\lambda\}$
- Model scanned using NMSSMTools imposing constraints from b-physics, LHC SUSY searches, RD measurements and D³M
- ▶ Required $122 \, {
 m GeV} \le m_{h_1/a_1} \le 130 \, {
 m GeV}$ and $R_X^{bb}(h_1) \simeq 1$
- Three regions distinguishable by χ_1^0 composition found

Assuming 'full' unification at the GUT-scale leads to

 $p_i = \{m_0, m_{1/2}, A_0, \lambda\}$

- ► CNMSSM-NUHM: m_S , m_{H_u} , $m_{H_d} \neq m_0$; $A_\lambda = A_\kappa \neq A_0 \rightarrow p_i + \{\tan \beta, \kappa, \mu_{\text{eff}}, A_\lambda\}$
- Model scanned using NMSSMTools imposing constraints from b-physics, LHC SUSY searches, RD measurements and D³M

- ▶ Required $122 \, {
 m GeV} \le m_{h_1/a_1} \le 130 \, {
 m GeV}$ and $R_X^{bb}(h_1) \simeq 1$
- Three regions distinguishable by χ_1^0 composition found

Assuming 'full' unification at the GUT-scale leads to

 $p_i = \{m_0, m_{1/2}, A_0, \lambda\}$

- ► CNMSSM-NUHM: m_S , m_{H_u} , $m_{H_d} \neq m_0$; $A_\lambda = A_\kappa \neq A_0 \rightarrow p_i + \{\tan \beta, \kappa, \mu_{\text{eff}}, A_\lambda\}$
- Model scanned using NMSSMTools imposing constraints from b-physics, LHC SUSY searches, RD measurements and D³M

▶ Required $122 \, {
m GeV} \le m_{h_1/a_1} \le 130 \, {
m GeV}$ and $R_X^{bb}(h_1) \simeq 1$

• Three regions distinguishable by χ_1^0 composition found

Assuming 'full' unification at the GUT-scale leads to

$$p_i = \{m_0, m_{1/2}, A_0, \lambda\}$$

- ► CNMSSM-NUHM: m_S , m_{H_u} , $m_{H_d} \neq m_0$; $A_\lambda = A_\kappa \neq A_0 \rightarrow p_i + \{\tan \beta, \kappa, \mu_{\text{eff}}, A_\lambda\}$
- Model scanned using NMSSMTools imposing constraints from b-physics, LHC SUSY searches, RD measurements and D³M
- ▶ Required $122 \, {
 m GeV} \le m_{h_1/a_1} \le 130 \, {
 m GeV}$ and $R_X^{bb}(h_1) \simeq 1$
- Three regions distinguishable by χ_1^0 composition found

The FP region

The singlino-higgsino region

→ Region allowing maximum enhancement

in $R_{\gamma\gamma}(h_{a_1})$ (~60%)!

Upper limit on χ_1^{\pm} (and χ_1^0) mass in CNMSSM-NUHM

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Summary

- ► A 125 GeV a₁ achievable when the universality condition is lifted from the Higgs sector
- With a light and higgsino-like χ[±]₁, a₁ could result in an enhancement in the γγ rate around 125 GeV
- A dedicated analysis of the bb associated Higgs production mode important for identifying this (and some other possible) BSM scenario(s)

Backup 1

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Backup 2

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで