UV Completions of Composite Higgs Models with Partial Compositeness

Alberto Parolini

SISSA

arXiv 12 II. 7290
F. Caracciolo, AP, M. Serone

arXiv I3xx.xxxx
D. Marzocca, AP, M. Serone

Motivation

Address SM Naturalness problem: mechanism to protect Higgs mass.

Features of our Setup

- BSM sector giving rise to a (pseudo)NGB field with the quantum numbers of the Higgs;
- coupling of SM fields to BSM physics through Partial Compositeness;
- purely 4d strongly interacting sector;
- low energy description of strongly coupled physics with the help of supersymmetry, via Seiberg duality for gauge theories.

Higgs as a pNGB

$G_{f} / H_{f}, \quad \mathrm{SO}(5) / \mathrm{SO}(4) \quad \Rightarrow \quad \mathrm{V}(\mathrm{h})=0 \quad$ at tree level

$$
\begin{array}{ll}
\mathrm{SU}(2) \times \mathrm{U}(1) \subseteq G_{S M} \subseteq H_{f} \\
\mathcal{L} \supseteq \epsilon M \xi, \quad \xi \in \mathrm{SM}
\end{array} \quad \Rightarrow \mathrm{~V}(\mathrm{~h}) \neq 0
$$

Partial Compositeness

$\mathcal{L}=\bar{\xi} i \not \partial \xi+\bar{M}\left(i \not \partial-m_{M}\right) M+\epsilon M \xi+$ h.c.
$\tan \phi=\frac{\epsilon}{m_{M}}$

$$
\begin{aligned}
& \text { light }=\xi \cos \phi+M \sin \phi \\
& \text { heavy }=-\xi \sin \phi+M \cos \phi
\end{aligned}
$$

- Flavour hierarchies
- GIM-like mechanism suppressing FCNC and E\& processes

The General Setup

$$
\mathcal{N}=1 \quad \mathrm{SO}(N) \quad N_{f}=N
$$

$$
G_{f}=\mathrm{SO}(5) \times \mathrm{SU}(N-5) \quad W_{e l}=m_{a b} Q^{a} Q^{b}+\lambda_{I J K} Q^{I} Q^{J} \xi^{K}
$$

$$
\begin{gathered}
\mathcal{N}=1 \quad \mathrm{SO}(4)_{m} \quad W_{\operatorname{mag}}=q_{I} M^{I J} q_{J}-\mu^{2} M_{a a}+\epsilon_{I J K} M^{I J} \xi^{K} \\
\epsilon_{I J K}=\lambda_{I J K} \Lambda, \quad \mu^{2}=-m_{Q} \Lambda
\end{gathered}
$$

$$
\begin{aligned}
& F_{M_{a b}}=q_{a}^{n} q_{b}^{n}-\mu^{2} \delta_{a b} \\
& \left\langle q_{a}^{n}\right\rangle=\left(\begin{array}{l}
\mu \mathbb{1}_{4}\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) \\
\mathrm{SO}(4)_{m} \times \mathrm{SO}(5) \times \mathrm{SU}(N-5) \rightarrow \mathrm{SO}(4)_{D} \times \mathrm{SU}(N-5)
\end{array}, \quad a=(m, 5), m, n=1,2,3,4\right. \\
& { }^{2}(N)
\end{aligned}
$$

6 : along the broken $\mathrm{SO}(4)_{m} \times \mathrm{SO}(4)$ directions eaten by the magnetic vector bosons ;
4 : along the broken $\mathrm{SO}(5) / \mathrm{SO}(4)_{D}$ directions identified with the Higgs field.

Explicit Soft SUSY Breaking

- Gauginos’ masses

(as in the MSSM)

- SM Sparticles' masses

$$
-\mathcal{L}_{\text {SUST }}=\widetilde{m}_{L}^{2}\left|\widetilde{t}_{L}\right|^{2}+\widetilde{m}_{R}^{2}\left|\widetilde{t}_{R}\right|^{2}+\left(\epsilon_{L} B_{L}\left(\xi_{L}\right)_{i a} M_{i a}+\epsilon_{R} B_{R}\left(\xi_{R}\right)_{i a} M_{i a}+\frac{1}{2} \widetilde{m}_{g, \alpha} \lambda_{\alpha} \lambda_{\alpha}+\text { h.c. }\right)
$$

\Rightarrow no qualitative change in the spectrum

General breaking:

$$
\mathcal{L} \supseteq \widetilde{m}_{1 e l}^{2} Q^{\dagger a} Q^{a}+\widetilde{m}_{2 e l}^{2} Q^{\dagger i} Q^{i}+\left(\frac{1}{2} \widetilde{m}_{\lambda} \lambda^{a b} \lambda^{a b}+h . c .\right)
$$

Higgs Potential

$$
\begin{aligned}
& \sin \frac{h}{f}=s_{h} \\
& V=-\gamma s_{h}^{2}+\beta s_{h}^{4}+\delta s_{h}^{4} \log s_{h}+\mathcal{O}\left(s_{h}^{6}\right) \\
& \gamma=\gamma_{\text {tree }}+\gamma_{g}+\gamma_{m}, \quad \beta=\beta_{g}+\beta_{m}, \quad \delta=\delta_{g}+\delta_{m} \\
& \xi=\sin ^{2} \frac{\langle h\rangle}{f}=\frac{\gamma}{2 \beta}+O(\delta)
\end{aligned}
$$

Higgs Potential

Conclusions

Explicit 4d realization of pNGB Higgs idea
Partial Compositeness
SUSY

Possible Future Directions (in progress)

Higgs Potential
SHSY
Non top SM fields masses:

- W deformations
- K deformations

Pert. unitar. of $W_{\mathrm{L}} W_{\mathrm{L}}$ scattering
$(4 \times 4=1+6+9)$

Thank You

Backup Transparencies

Model I

$$
\begin{aligned}
& N=N_{f}=11 \\
& W_{e l} \supseteq \frac{1}{2} m_{1 S} S_{i j}^{2}+\lambda_{1} Q^{i} Q^{j} S_{i j}+\frac{1}{2} m_{2 S} S_{i a}^{2}+\lambda_{2} Q^{i} Q^{a} S_{i a} \\
& \begin{array}{|c|c|c|c|c|c|c|c|}
\hline & \mathrm{SO}(11)_{e l} & \mathrm{SO}(5) & \mathrm{SO}(6) \\
\hline Q_{i}^{N} & 11 & 1 & 6 \\
Q_{a}^{N} & 11 & 5 & 1 \\
S_{i j} & 1 & 1 & 20 \oplus \mathbf{S O}(6) \\
S_{i a} & 1 & 5 & \mathbf{6} \\
\hline
\end{array} \quad \begin{array}{|c|c|c|c|}
\hline & \mathrm{SO}(4)_{\text {mag }} & \mathrm{SO}(5) & \mathrm{SO}(6) \\
\hline q_{i}^{n} & 4 & \mathbf{1} & \mathbf{6} \\
q_{a}^{n} & 4 & 5 & 1 \\
M_{i j} & 1 & 1 & \mathbf{2 0} \oplus \mathbf{1} \\
M_{i a} & 1 & 5 & 6 \\
M_{a b} & 1 & 14 \oplus \mathbf{1} & 1 \\
\hline
\end{array}
\end{aligned}
$$

$W_{\text {mag }} \supset-\frac{1}{2} m_{1} M_{i j}^{2}-\frac{1}{2} m_{2} M_{i a}^{2}$

Model II

$$
N=N_{f}=9
$$

$$
W_{e l} \supseteq \lambda Q^{i} Q^{j} S_{i j}
$$

$$
G_{f}=\mathrm{SO}(5) \times \mathrm{SU}(4)
$$

	$\mathrm{SO}(4)_{\operatorname{mag}}$	$\mathrm{SO}(5)$	$\mathrm{SU}(4)$
q_{i}^{n}	4	1	4
q_{a}^{n}	4	5	1
$M_{i a}$	1	5	$\overline{4}$
$M_{a b}$	1	$14 \oplus 1$	1

$$
\mathrm{SU}(4) \supset \mathrm{SU}(3)_{c} \times \mathrm{U}(1)_{X}
$$

$$
\mathbf{4}=\mathbf{3}_{2 / 3}+\mathbf{1}_{-2}
$$

	$\mathrm{SO}(9)_{e l}$	$\mathrm{SO}(5)$	$\mathrm{SU}(4)$
Q_{i}^{N}	$\mathbf{9}$	$\mathbf{1}$	$\overline{\mathbf{4}}$
Q_{a}^{N}	$\mathbf{9}$	$\mathbf{5}$	$\mathbf{1}$
$S_{i j}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1 0}$

$$
W_{\text {mag }} \supseteq M M_{i j} S_{i j}
$$

$M_{i 5}$ stays massless:
$M_{\alpha 5}, \alpha=6,7,8$
M_{95}

RG Flow of Soft Terms

$$
\begin{aligned}
& \mathcal{L}_{e l}=\int d^{4} \theta \sum_{I=1}^{N_{f}} Z_{I}(E) Q_{I}^{\dagger} e^{V_{e l}} Q_{I}+\left(\int d^{2} \theta S(E) W_{e l}^{\alpha} W_{e l, \alpha}+h . c .\right) \\
& Z_{I}(E)=Z_{I}^{0}(E)\left(1-\theta^{2} B_{I}(E)-\bar{\theta}^{2} B_{I}^{\dagger}(E)-\theta^{2} \theta^{2}\left(\widetilde{m}_{I}^{2}(E)-\left|B_{I}(E)\right|^{2}\right)\right) \\
& S(E)=\frac{1}{g^{2}(E)}-\frac{i \Theta}{8 \pi^{2}}+\theta^{2} \frac{\widetilde{m}_{\lambda}(E)}{g^{2}(E)} \\
& \mathrm{U}(1)^{N_{f}} \\
& Q_{I} \rightarrow e^{A_{I}} Q_{I}, \quad Z_{I} \rightarrow e^{-A_{I}-A_{I}^{\dagger}} Z_{I}, \quad S \rightarrow S-\sum_{I=1}^{N_{f}} \frac{t_{I}}{8 \pi^{2}} A_{I}
\end{aligned}
$$

RG Flow of Soft Terms cont'd

$$
\begin{aligned}
& \Lambda_{S}= E e^{-\frac{8 \pi^{2} S(E)}{b}}, \quad \hat{Z}_{I}=Z_{I}(E) e^{-\int^{R(E)} \frac{\gamma_{I}(E)}{\beta(R)} d R} \\
& I=\Lambda_{S}^{\dagger}\left(\prod_{I=1}^{N_{f}} \hat{Z}_{I}^{\frac{2 t_{I}}{b}}\right) \Lambda_{S} \\
& \mathcal{L}_{m a g}= \int d^{4} \theta\left(c_{M_{I J}} \frac{M_{I J}^{\dagger} \hat{Z}_{I} \hat{Z}_{J} M_{I J}}{I}+c_{q_{I}} q_{I}^{\dagger} e^{V_{m a g}} \hat{Z}_{I}^{-1}\left(\prod_{J} \hat{Z}_{J}^{\frac{t_{J}}{b}}\right) q_{I}\right) \\
&+\int d^{2} \theta\left(S_{m}(E) W_{m}^{\alpha} W_{m, \alpha}+\frac{q_{I} M_{I J} q_{J}}{\Lambda_{S}}\right)+h . c ., \\
& \widetilde{m}_{M_{I J}}^{2}= \widetilde{m}_{I}^{2}+\widetilde{m}_{J}^{2}-\frac{2}{b} \sum_{K=1}^{N_{f}} \widetilde{m}_{K}^{2}, \quad \widetilde{m}_{q_{I}}^{2}=-\widetilde{m}_{I}^{2}+\frac{1}{b} \sum_{K=1}^{N_{f}} \widetilde{m}_{K}^{2}
\end{aligned}
$$

Road to Higgs Potential

$$
\begin{array}{ll}
M_{a b} \rightarrow\left(U M U^{t}\right)_{a b}, & \psi_{M_{a b}} \rightarrow\left(U \psi_{M} U^{t}\right)_{a b} \\
M_{i a} \rightarrow U_{a b} M_{i b}, & \psi_{M_{i a}} \rightarrow U_{a b} \psi_{M_{i b}}
\end{array}
$$

$$
\mathcal{L}_{f, 0}=\bar{q}_{L} i \not \supset q_{L}+\bar{t}_{R} i \not D t_{R}+\sum_{i=1}^{N_{S}} \bar{S}_{i}\left(i \not \supset-m_{i S}\right) S_{i}+\sum_{j=1}^{N_{Q}} \bar{Q}_{j}\left(i \not \nabla-m_{i Q}\right) Q_{j}+
$$

$$
\sum_{i=1}^{N_{S}}\left(\frac{\epsilon_{t S}^{i}}{\sqrt{2}} \bar{\xi}_{R} P_{L} U S_{i}+\epsilon_{q S}^{i} \bar{\xi}_{L} P_{R} U S_{i}\right)+\sum_{j=1}^{N_{Q}}\left(\frac{\epsilon_{t Q}^{j}}{\sqrt{2}} \bar{\xi}_{R} P_{L} U Q_{i}+\epsilon_{q Q}^{j} \bar{\xi}_{L} P_{R} U Q_{i}\right)+h . c .
$$

model I

$$
\begin{array}{ll}
\epsilon_{t S}=\epsilon_{R}, \quad \epsilon_{t Q}^{1}=\epsilon_{R} \cos \omega, \quad \epsilon_{t Q}^{2}=\epsilon_{R} \sin \omega, & \epsilon_{q S}=\epsilon_{q Q}=\epsilon_{t} \\
\epsilon_{q S}=\frac{\epsilon_{L}}{\sqrt{2}}, \quad \epsilon_{q Q}^{1}=\frac{\epsilon_{L}}{\sqrt{2}} \cos \omega, \quad \epsilon_{q Q}^{2}=\frac{\epsilon_{L}}{\sqrt{2}} \sin \omega
\end{array}
$$

Bottom Mass

$$
\begin{aligned}
& \lambda_{a b} \xi_{L} Q_{a} Q_{b} \xi_{R} \longrightarrow \epsilon_{a b} \xi_{L} M_{a b} \xi_{R} \\
& \Delta \mathcal{L} \sim \bar{b}_{R} b_{L} h \frac{\Lambda}{\Lambda_{L}}\left(\left\langle M_{n n}\right\rangle-\left\langle M_{55}\right\rangle\right)
\end{aligned}
$$

Vacuum Stability

$$
\begin{aligned}
& M_{a b}=X \delta_{a b}, \quad M_{i j}=Y \delta_{i j} \\
& W=2 \Lambda^{-\frac{5}{2}}(\operatorname{det} M)^{\frac{1}{2}}-\mu^{2} M_{a a}-\frac{1}{2} m_{1} M_{i j}^{2}-\frac{1}{2} m_{2} M_{i a}^{2} \\
& \epsilon=\frac{\mu}{\Lambda}, \quad m_{1}=\Lambda \epsilon^{\kappa} \\
& S_{b} \sim \frac{2}{3}<\kappa \leq 1 \\
& V_{M a x}
\end{aligned} \epsilon^{-\frac{16}{3}+2 \kappa} \gtrsim \epsilon^{-\frac{10}{3}} \quad l y
$$

Mixing Terms

$$
\begin{aligned}
& \lambda_{t} \xi^{i a} Q_{i} Q_{a}+\lambda_{\phi} \phi^{i a} Q_{i} Q_{a} \longrightarrow \quad \epsilon_{t} \xi^{i a} M_{i a}+\epsilon_{\phi} \phi^{i a} M_{i a} \\
& \xi^{i a}=\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
b_{L}^{1} & b_{L}^{2} & b_{L}^{3} & 0 \\
-i b_{L}^{1} & -i b_{L}^{2} & -i b_{L}^{3} & 0 \\
t_{L}^{1} & t_{L}^{2} & t_{L}^{3} & 0 \\
i t_{L}^{L} & i t_{L}^{2} & i t_{L}^{3} & 0 \\
0 & 0 & 0 & 0
\end{array}\right)_{2 / 3}, \quad \phi^{i a}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & \psi^{c}
\end{array}\right)_{-2}
\end{aligned}
$$

Explicit SUSY Breaking

$$
\begin{aligned}
-\mathcal{L}_{\text {SUSY }}= & \widetilde{m}_{L}^{2}\left|\widetilde{t}_{L}\right|^{2}+\widetilde{m}_{\psi}^{2} \left\lvert\, \widetilde{\psi}^{2}+\left(\epsilon_{L} B_{L}\left(\xi_{L}\right)_{i a} M_{i a}+\frac{1}{2} \widetilde{m}_{g, \alpha} \lambda_{\alpha} \lambda_{\alpha}+h . c .\right)\right. \\
& +\widetilde{m}_{1}^{2}\left|M_{i a}\right|^{2}+\widetilde{m}_{2}^{2}\left|M_{a b}\right|^{2}+\widetilde{m}_{3}^{2}\left|q_{i}\right|^{2}-\widetilde{m}_{4}^{2}\left|q_{a}\right|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{L} \supseteq \widetilde{m}_{1 e l}^{2} Q^{\dagger a} Q^{a}+\widetilde{m}_{2 e l}^{2} Q^{\dagger i} Q^{i} \\
& \left\langle q_{m}^{n}\right\rangle=\delta_{m}^{n} \mu \rightarrow \delta_{m}^{n} \sqrt{\mu^{2}+\frac{1}{2} \widetilde{m}_{4}^{2}} \equiv \delta_{m}^{n} \widetilde{\mu}
\end{aligned}
$$

$$
\frac{\widetilde{m}_{2 e l}^{2}}{\widetilde{m}_{1 e l}^{2}}>\frac{8}{5}
$$

$$
W_{e l} \supseteq m_{Q} Q^{a} Q^{a} \quad m_{Q} \rightarrow m_{Q}\left(1+\theta^{2} B_{m}\right)
$$

$$
\left\langle q_{m}^{n}\right\rangle,\left\langle M_{m n}\right\rangle,\left\langle M_{55}\right\rangle \neq 0
$$

$\operatorname{Re} q_{5}^{n}, \quad \operatorname{Re} M_{5 n}$

Landau Poles model I

$$
\begin{aligned}
& \Lambda_{3}^{L}=m_{2 S} \exp \left(\frac{2 \pi}{21 \alpha_{3}\left(m_{Z}\right)}\right)\left(\frac{m_{Z}}{\mu}\right)^{-\frac{1}{3}}\left(\frac{\mu}{\Lambda}\right)^{\frac{2}{7}}\left(\frac{\Lambda}{m_{2 S}}\right)^{\frac{16}{21}} \\
& \Lambda_{2}^{L}=m_{2 S} \exp \left(\frac{2 \pi}{17 \alpha_{2}\left(m_{Z}\right)}\right)\left(\frac{m_{Z}}{\mu}\right)^{-\frac{19}{102}}\left(\frac{\mu}{\Lambda}\right)^{\frac{22}{17}}\left(\frac{\Lambda}{m_{2 S}}\right)^{\frac{11}{17}} \\
& \Lambda_{1}^{L}=m_{2 S} \exp \left(\frac{2 \pi}{91 \alpha_{1}\left(m_{Z}\right)}\right)\left(\frac{m_{Z}}{\mu}\right)^{\frac{41}{546}}\left(\frac{\mu}{\Lambda}\right)^{\frac{336}{546}}\left(\frac{\Lambda}{m_{2 S}}\right)^{\frac{215}{273}} \\
& \Lambda_{3}^{L} \sim 10^{2}-10^{3} \mathrm{TeV}
\end{aligned}
$$

Landau Poles model II

$$
\begin{aligned}
& \Lambda_{3}^{L}=\Lambda \exp \left(\frac{\pi}{2 \alpha_{3}\left(m_{Z}\right)}\right)\left(\frac{m_{Z}}{\mu}\right)^{-\frac{7}{4}}\left(\frac{\mu}{\Lambda}\right)^{\frac{1}{4}}, \\
& \Lambda_{2}^{L}=\Lambda \exp \left(\frac{2 \pi}{9 \alpha_{2}\left(m_{Z}\right)}\right)\left(\frac{m_{Z}}{\mu}\right)^{-\frac{19}{54}}\left(\frac{\mu}{\Lambda}\right)^{2}, \\
& \Lambda_{1}^{L}=\Lambda \exp \left(\frac{6 \pi}{305 \alpha_{1}\left(m_{Z}\right)}\right)\left(\frac{m_{Z}}{\mu}\right)^{\frac{41}{610}}\left(\frac{\mu}{\Lambda}\right)^{\frac{236}{305}} \\
& \begin{array}{ll}
\Lambda_{1}^{L} \sim 10^{3} \mathrm{TeV} & \mathrm{SU}(4) \supset \mathrm{SU}(3)_{c} \times \mathrm{U}(1)_{X} \\
& \mathbf{4}=\mathbf{3}_{2 / 3}+\mathbf{1}_{-2} \\
\mathbf{1 0}=\mathbf{1}_{2}+\mathbf{3}_{2 / 3}+\mathbf{6}_{-2 / 3}
\end{array}
\end{aligned}
$$

Higgs as a pNGB

$$
\begin{aligned}
& G_{f} / H_{f}, \quad \mathrm{SU}(2) \times \mathrm{U}(1) \subseteq H_{f} \\
& G_{f}=\mathrm{SO}(5) \times \mathrm{U}(1)_{X} \\
& \quad \downarrow \\
& H_{f}=\mathrm{SO}(4) \times \mathrm{U}(1)_{X}
\end{aligned}
$$

$$
Y=T_{3 R}+X
$$

$$
\text { SM interactions } \Rightarrow \mathrm{V}(\mathrm{~h})
$$

$$
\Lambda_{N P}=\Lambda \approx 4 \pi f
$$

$$
\xi \equiv \frac{v^{2}}{f^{2}}
$$

Partial Compositeness

$\mathcal{L}=\bar{\psi}_{L} i \not \partial \psi_{L}+\bar{\chi}(i \not \partial-m) \chi+\Delta_{L} \bar{\psi}_{L} \chi_{R}+$ h.c.
$\tan \varphi_{L}=\frac{\Delta_{L}}{m}$

$$
\mid \text { light }\rangle=\cos \varphi_{L}|\psi\rangle+\sin \varphi_{L}|\chi\rangle
$$

$$
\mid \text { heavy }\rangle=-\sin \varphi_{L}|\psi\rangle+\cos \varphi_{L}|\chi\rangle
$$

$\mathcal{L} \supseteq \bar{\chi} Y_{*} H \tilde{\chi}+$ h.c. $\quad \Rightarrow \quad y=Y_{*} \sin \varphi_{L} \sin \varphi_{R}$

- Flavour hierarchies
- GIM-like mechanism suppressing FCNC and \&\& processes

SM Gauge Group

$\mathrm{SU}(2)_{0, L} \times \mathrm{SU}(2)_{0, R} \cong \mathrm{SO}(4)$

Higgs Potential

Preliminar Results:

plot??

ListPlot[\{Data[[All, \{imh, imLMF\}]], Data[[All, \{imh, imLMS\}]]\}, AxesLabel -> \{"mh [GeV]", "m [GeV]"\}, PlotRange -> \{\{40, 170\}, \{0, 2550\}\}, AxesStyle -> Thick LabelStyle -> "Large",PlotStyle $->$ \{Directive[PointSize[0.02], Blue], Directive[PointSize[0.02], Red]\}, ImageSize $->600$, PlotLegends $->$ SwatchLegend[\{Style ["Lightest Fermion", Blue, Large], Style["Lightest Scalar", Red, Large]\}, LegendMarkers -> "Bubble"]]

Data $=$ ToExpression[Import["/Users/albertoparolini/Dropbox/Higgs potential in susylcompositeness/susy chm/data/DataAllRangeXi01blind.dat", "Table"]];

plot??

ListPlot[Data[[All, \{imh, iFT\}]], AxesLabel -> \{"mh [GeV]", "FT"\}, AxesStyle -> Thick, LabelStyle -> "Large", PlotStyle -> PointSize[0.02],ImageSize -> 500]

Outline

- Introduction
- The General Setup

Explicit Realizations
Comparison with Bottom-up Approaches
Higgs Potential
Conclusions

Motivation

$$
\mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y} \rightarrow \mathrm{U}(1)_{e m} \quad H(x)=\frac{1}{\sqrt{2}} e^{i \sigma^{a} \chi^{a}(x) / v}\binom{0}{v+h(x)}
$$

$$
\delta m^{2} \sim \frac{\#}{16 \pi^{2}} \Lambda_{N P}^{2}, \quad \Lambda_{N P} \sim M_{P l}
$$

Seiberg Duality for $\mathcal{N}=1 \mathrm{SO}(\mathrm{N})$ SQCD

	$\mathrm{SO}(N)_{g}$	$\mathrm{SU}\left(N_{f}\right)$	$\mathrm{U}(1)_{R}$
Q_{I}^{N}	\mathbf{N}	$\mathbf{N}_{\mathbf{f}}$	$\frac{\left(N_{f}-N+2\right)}{N_{f}}$

$$
\begin{aligned}
b & =3(N-2)-N_{f} \\
\Lambda_{e l} & =E \exp \left(-\frac{8 \pi^{2}}{b g_{e l}^{2}(E)}\right)
\end{aligned}
$$

$$
(N-2)<N_{f}<3(N-2)
$$

	$\mathrm{SO}\left(N_{f}-N+4\right)_{g}$	$\mathrm{SU}\left(N_{f}\right)$	$\mathrm{U}(1)_{R}$
q_{I}^{n}	$\mathbf{N}_{\mathbf{f}}-\mathbf{N}+\mathbf{4}$	$\overline{\mathbf{N}}_{\mathbf{f}}$	$\frac{N-2}{N_{f}}$
$M_{I J}$	$\mathbf{1}$	$\frac{\mathbf{1}}{\mathbf{2}} \mathbf{N}_{\mathbf{f}}\left(\mathbf{N}_{\mathbf{f}}+\mathbf{1}\right)$	$\frac{2\left(N_{f}-N+2\right)}{N_{f}}$

$$
\begin{aligned}
& M_{I J} \sim Q_{I}^{N} Q_{J}^{N} \\
& W_{\text {mag }} \propto \frac{1}{\mu} q_{I}^{n} M^{I J} q_{J}^{n}
\end{aligned}
$$

$$
\begin{aligned}
& \Lambda_{e l}^{3(N-2)-N_{f}} \Lambda_{m a g}^{3\left(N_{f}-N+2\right)-N_{f}} \propto(-1)^{N_{f}-N} \mu^{N_{f}} \\
& (N-2)<N_{f} \leq \frac{3}{2}(N-2) \quad \Rightarrow \quad g_{m a g} \xrightarrow{I R} 0
\end{aligned}
$$

$$
\mathcal{N}=1 \operatorname{SUSY} \operatorname{SO}(N) \quad N_{f}=N
$$

$$
N \leq 3(N-2) / 2 \quad \Rightarrow \quad N \geq 6
$$

$$
\mathrm{SO}\left(N_{f}-N+4\right)_{m}=\mathrm{SO}(4)_{m}
$$

$$
\left.Q_{I}^{N}=\left(\begin{array}{c}
Q_{1}^{N} \\
\vdots \\
Q_{5}^{N} \\
Q_{6}^{N} \\
\vdots \\
Q_{N_{f}}^{N}
\end{array}\right)\right\}\left\{Q_{a}^{N}\right.
$$

$$
\epsilon_{I J K}=\lambda_{I J K} \Lambda, \quad \mu^{2}=-m_{Q} \Lambda
$$

Model I

$$
\begin{aligned}
& N=N_{f}=11 \\
& \Lambda_{3}^{L} \sim 10^{2}-10^{3} \mathrm{TeV}
\end{aligned}
$$

$$
G_{f}=\mathrm{SO}(5) \times \mathrm{SO}(6)
$$

Model II
$N=N_{f}=9$

$$
G_{f}=\mathrm{SO}(5) \times \mathrm{SU}(4)
$$

$\Lambda_{1}^{L} \sim 10^{3} \mathrm{TeV}$

Main difference: $t_{R} \in M_{i a}$ fully composite

Top Quark Partial Compositeness (model I)

$$
\begin{aligned}
& W_{e l} \supseteq \lambda_{L}\left(\xi_{L}\right)^{i a} Q_{i} Q_{a}+\lambda_{R}\left(\xi_{R}\right)^{i a} Q_{i} Q_{a} \\
& W_{\text {mag }} \supseteq \epsilon_{L}\left(\xi_{L}\right)^{i a} M_{i a}+\epsilon_{R}\left(\xi_{R}\right)^{i a} M_{i a} \\
& \left(\xi_{L}\right)^{i a}=\left(\begin{array}{ccccc}
b^{1} & -i b^{1} & t^{1} & i t^{1} & 0 \\
-i b^{1} & -b^{1} & -i t^{1} & t^{1} & 0 \\
b^{2} & -i b^{2} & t^{2} & i t^{2} & 0 \\
-i b^{2} & -b^{2} & -i t^{2} & t^{2} & 0 \\
b^{3} & -i b^{3} & t^{3} & i t^{3} & 0 \\
-i b^{3} & -b^{3} & -i t^{3} & t^{3} & 0
\end{array}\right)_{2 / 3}, \quad\left(\xi_{R}\right)^{i a}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & \left(t^{c}\right)^{1} \\
0 & 0 & 0 & 0 & i\left(t^{c}\right)^{1} \\
0 & 0 & 0 & 0 & \left(t^{c}\right)^{2} \\
0 & 0 & 0 & 0 & i\left(t^{c}\right)^{2} \\
0 & 0 & 0 & 0 & \left(t^{c}\right)^{3} \\
0 & 0 & 0 & 0 & i\left(t^{c}\right)^{3}
\end{array}\right)_{-2 / 3},
\end{aligned}
$$

Comparison with Bottom-up Approaches

$$
\begin{aligned}
& \mathrm{SO}(5) \times \mathrm{SO}(4) \rightarrow \mathrm{SO}(4)_{D} \\
& q_{b}^{n}=\exp \left(\frac{i \sqrt{2}}{f} h^{\hat{a}} T_{\hat{a}}+\frac{i}{2 f} \pi^{a} T_{a}\right)_{b c} \widetilde{q}_{c}^{m} \exp \left(\frac{i}{2 f} \pi^{a} T_{a}\right)_{m n}
\end{aligned}
$$

effective $\mathrm{SO}(5) / \mathrm{SO}(4)$

$$
\begin{aligned}
& U=\exp \left(i \frac{\sqrt{2}}{f} h^{\hat{a}} T_{\hat{a}}\right), \quad U \rightarrow g U h^{\dagger}, \quad f=\sqrt{2} \mu \\
& m_{W}=\frac{g f}{2} \sin \frac{\langle h\rangle}{f} \equiv \frac{g v}{2}, \quad m_{Z}=\frac{m_{W}}{\cos \theta_{W}}
\end{aligned}
$$

Higgs Potential

$$
\begin{aligned}
& V^{(0)}=m_{1}^{2}\left|q_{5}^{n}\right|^{2}+m_{2}^{2}\left|q_{m}^{n}\right|^{2}+\sum_{i=1}^{5}\left|h_{i}\right|^{2}\left|F_{a b}^{M(i)}\right|^{2} \\
& W_{m a g}=\sum_{i=1}^{5} h_{i}\left(q_{a} M^{a b} q_{b}\right)^{(i)}-\mu^{2} M^{a a} \\
& \left(\mathbf{1}_{0} \cdot \mathbf{1}_{0} \cdot \mathbf{1}_{0}\right), \quad\left(\mathbf{1}_{0} \cdot \mathbf{2}_{ \pm 1 / 2} \cdot \mathbf{2}_{\mp 1 / 2}\right), \quad\left(\mathbf{2}_{ \pm 1 / 2} \cdot \mathbf{3}_{\mp 1} \cdot \mathbf{2}_{ \pm 1 / 2}\right), \quad\left(\mathbf{2}_{\mp 1 / 2} \cdot \mathbf{3}_{0} \cdot \mathbf{2}_{ \pm 1 / 2}\right), \quad\left(\mathbf{2}_{\mp 1 / 2} \cdot \mathbf{1}_{0}^{\prime} \cdot \mathbf{2}_{ \pm 1 / 2}\right) \\
& V^{(1)}=\frac{1}{16 \pi^{2}} \sum_{n} \frac{(-1)^{2 s_{n}}}{4}\left(2 s_{n}+1\right) m_{n}^{4}\left(\log \frac{m_{n}^{2}}{Q^{2}}-\frac{3}{2}\right)=\frac{1}{64 \pi^{2}} \operatorname{STr}\left[M^{4}\left(\log \frac{M^{2}}{Q^{2}}-\frac{3}{2}\right)\right]
\end{aligned}
$$

