### SUSY2013, 26-31 August, ICTP, Trieste

# Search for the Higgs boson in fermionic channels using the ATLAS detector



Valerio Dao

Radboud Universiteit & Nikhef On behalf of the ATLAS collaboration





## Probing Higgs couplings to fermions



- ◆ The discovery and the properties measurements of the Higgs boson particle has been driven mainly by analyses exploiting bosonic decay modes (H→ $\gamma\gamma$ , H→ZZ→4I, H→WW→IvIv)
- A direct measurement of Higgs fermionic couplings is crucial to:
  - further investigate the nature of the discovered particle
  - test for potential beyond-SM contributions
  - $\diamond$  investigate the role of top quark in the EWSB mechanism



Br(H→bb): VH, ttH

Top Yukawa coupling: ttH( $H \rightarrow bb$ ), ttH( $H \rightarrow \gamma\gamma$ )

Br(H  $\rightarrow$ ττ): all production modes

*Rare decays:*  $H \rightarrow \mu\mu$ ,  $ZH(H \rightarrow inv.)$ 





### H→bb: VH





- Binning in vector boson p<sub>τ</sub> (Vp<sub>T</sub>) reconstructed from missing E<sub>T</sub> and leptons: further cut optimization (dR<sub>jj</sub>) and increase in sensitivity
- Simultaneous fit to 3 channels in multiple  $Vp_T$  bins and jet and b-tag multiplicities:
  - helps normalizing backgrounds
  - controls effect of systematic uncertainties
  - solates categories with very different S/sqrt(B)

|                         |           | 2 jets 1 tag | 3 jets 1 tag | 2 jets 2tags | 3 jets 2 tags | top CR             | top emu CR          |
|-------------------------|-----------|--------------|--------------|--------------|---------------|--------------------|---------------------|
| X 3 Vp <sub>T</sub> bin | 0 lepton  | norm. only   | norm. only   | shape        | shape         | -<br>inverting cut | -<br>e-mu pair with |
| X 5 Vp <sub>T</sub> bin | 1 lepton  | norm. only   | norm. only   | shape        | Shape         | on M <sub>IL</sub> | same analysis cuts  |
| X 5 Vp <sub>T</sub> bin | 2 leptons | norm. only   | norm. only   | shape        | shape         | norm. only         | norm. only          |

#### Valerio Dao





In 2 tags signal regions: m<sub>bb</sub> shape information used for signal extraction



Normalization of main backgrounds (*ttbar*, W+HF, Z+HF) free-floating in the fit:

- systematics for extrapolation across regions extracted from MC studies (different generators, ISR, parton shower)
- $\diamond$  correcting MC for data/MC mis-modelling: top  $p_{T}$  ,  $\Delta\varphi_{jj}$  in V+jets
- Largest systematics uncertainties: *ttbar modelling, b-tagging*







Data with subtracted MC prediction (but di-bosons):  $\diamond$  VZ(Z $\rightarrow$ bb) contribution: ~5 s.d. evidence. ( $\mu_{VZ}$  =0.9±0.2) nominal VH contribution ♦ VH from best fit:  $\mu = \frac{\sigma_{meas}}{\omega_{meas}}$  $\sigma_{SM}$ No significant excess observed above background-only predictions 95% C.L. limit on  $\sigma/\sigma_{\rm SM}$ **ATLAS** Preliminary Best-fit signal strength:  $\sqrt{s} = 8 \text{ TeV}$  Ldt = 20.3 fb<sup>-1</sup> ---- Observed (CLs) ----- Expected (CLs)  $\sqrt{s} = 7 \text{ TeV} \int \text{Ldt} = 4.7 \text{ fb}^{-1}$  $\mu$ =0.2 ± 0.5 (stat.) ± 0.4 (sys.) ± **1**σ + **2**σ @ m<sub>н</sub>=125 GeV

145 150

m<sub>H</sub> [GeV]

140

*Compatibility with*  $\mu$ =0 : 36% *Compatibility with*  $\mu$ =1 : 11%

• 95% CL limit on 
$$\sigma/\sigma_{SM}$$
:

observed  $\sigma/\sigma_{SM} = 1.4$ expected  $\sigma/\sigma_{SM} = 1.3$ 

@ m<sub>н</sub>=125 GeV



110 115 120 125 130 135

OL













- Possibility to trigger/identify all the di- $\tau$  decay mode ( $\tau_{lep}$ - $\tau_{lep}$ ,  $\tau_{lep}$ - $\tau_{had}$ ,  $\tau_{had}$ - $\tau_{had}$ )
- Define *different categories* to exploit changing S/B, sensitivity to background composition and targeting multiple Higgs production modes





Valerio Dao

### H→TT : discriminant



- Discriminant: m<sub>ττ</sub> from *Missing Mass Calculator (MMC*):
  - reconstruction of neutrino direction from kinematic
     constraints and template from MC τ decays
  - $\diamond$  resolution ~ 13-20% (better resolution for high  $p_{T}$  and  $\tau_{had})$
- Main (irreducible) background: Z→ττ modelled with embedding

↔ replacing µ in Z→µµ data events with τ decay from MC.





SUSY 2013 - Trieste







Approaching sensitivity to SM Higgs production

• Local  $p_0 @ m_H = 125 \text{ GeV}$ :

1.1 s.d. observed, 1.7 s.d. expected

• 95% CL limit on  $\sigma/\sigma_{SM}$ :

 $@ m_{H} = 125 \text{ GeV}$  observed  $\sigma/\sigma_{SM} = 1.9$ expected  $\sigma/\sigma_{SM} = 1.2$ 





Best-fit value for signal strength:

 $\mu = 0.7 \pm 0.7$ 

Testing compatibility for production modes:

 $\Rightarrow \mu_{qqF} \times BR(H \rightarrow \tau \tau) / BR_{SM}(H \rightarrow \tau \tau) = 2.4$ 

 $\Rightarrow \mu_{VBF+VH} \times BR(H \rightarrow \tau\tau) / BR_{SM}(H \rightarrow \tau\tau) = -0.4$ 

 consistent with the SM Higgs (but also no Higgs hypothesis) within 1 s.d. contour





### tth: $H \rightarrow bb$ and $H \rightarrow \gamma \gamma$







- ◆ Using I+jets ttbar decay topology: 1 lept, MET, ≥6 jets, ≥4 tags
- Separate analysis in categories according to jet and b-tag multiplicities  $\vec{s}_{k}$ 
  - ↔ signal enriched: 5 / ≥6 jets , 3 tags / ≥4 tags
  - ♦ signal depleted: used for background normalization, constraining of sys.
- Discriminant variables:
  - $\diamond \geq 6$  jets , 3 tags /  $\geq 4$  tags :  $m_{bb}$  from kinematic reconstruction
  - $\diamond$  other:  $H_T^{had}$  = scalar sum of jet  $p_T$ s
- Main challenge: understanding of the ttbar(+HF) background





- 95% CL limit on  $\sigma/\sigma_{SM}$ : @  $m_{H}$ =125 GeV expected  $\sigma/\sigma_{SM}$  = 13.1  $\sigma/\sigma_{SM}$  = 10.5
- Large impact of systematics (ttbar+HF, JES, tagging):
   *sensitivity degradation by 70%*

#### SUSY 2013 - Trieste



 $ttH(H \rightarrow \gamma\gamma)$ 

- 2 high-p<sub>T</sub> isolated photons (as in main  $H \rightarrow \gamma\gamma$  analysis)
- Targeting both leptonic and fully-hadronic ttbar decay modes
- Optimized selection to increase ttH purity over other H production modes (>80%):
  - ↔ Lep: ≥1 lep, MET, ≥1 tag : S/B ~ 0.5
  - ♦ Hadr: ≥6jets, ≥2tags
    : S/B ~ 0.2
- Background estimated from exponential fit to both signal and control regions.





• 95% CL limit on  $\sigma/\sigma_{SM}$ :

observed 
$$\sigma/\sigma_{SM} = 5.3$$
  
expected  $\sigma/\sigma_{SM} = 6.4$ 

- $\bullet$  contrary to ttH (H $\rightarrow$ bb), impact of systematics is small
- analysis still statistically limited





### Rare decays: $H \rightarrow \mu\mu$ , $ZH(H \rightarrow invisible)$







Very clean signature but very low BR (10<sup>-4</sup>)

BR could be enhanced by new physics contribution

- Exactly 2 opposite-sign isolated muons:
  - $\diamond$   $p_{T\,(\mu1)}{>}25~GeV$  ,  $p_{T\,(\mu2)}{>}$  25 GeV
  - $\Rightarrow p_{T(\mu\mu)} > 15 \text{ GeV} (against DY)$
  - categorize events according to di-muon mass resolution (2 muons with |eta|<1, at least 1 forward muon)</li>

### ♦ Main background: Z/γ\*→μμ





 Analytical description of the background (Breit-Wigner+exponential) validated in MC and control regions

• 95% CL limit on  $\sigma/\sigma_{SM}$ :

@ т<sub>н</sub>=125 GeV

observed  $\sigma/\sigma_{SM} = 9.8$ expected  $\sigma/\sigma_{SM} = 8.2$ 







- ♦ Br(H→ZZ→4v) is too small to be detected, looking for enhancement due to possible BSM effects
- $\overline{q}$
- Exploiting Z+H production:
  - $\diamond$  ee,  $\mu\mu$  events within Z mass window
  - missing transverse energy > 90 GeV
  - jet veto
  - additional kinematic/topological cuts
- Main background after selection:  $ZZ \rightarrow IIvv$
- No excess over background prediction
- Setting limit on Br(Higgs $\rightarrow$ invisible). For m<sub>H</sub>=125 GeV:

observed Br(H→inv) < 65% expected Br(H→inv) < 84% @ 95% CL

assuming SM ZH production rate



#### model independent limit



#### Valerio Dao





- Rich program of analyses in the fermionic Higgs sector at ATLAS
- No significant excess observed over background-only expectations :
  - ↔ VH (H→bb): 4.7 fb<sup>-1</sup> at 7 TeV + 20.9 fb<sup>-1</sup> at 8 TeV : obs. (exp.) σ/σ<sub>SM</sub> limit = 1.4 (1.3)
  - $\Rightarrow$  *H* $\rightarrow$ *tt*: 4.7 fb<sup>-1</sup> at 7 TeV + 13 fb<sup>-1</sup> at 8 TeV
  - ♦ ttH (H → bb): 4.7 fb<sup>-1</sup> at 7 TeV
  - ♦ ttH (H→γγ): 20.9 fb<sup>-1</sup> at 8 TeV
  - ♦  $H \rightarrow \mu\mu$ : 20.7 fb<sup>-1</sup> at 8 TeV
  - ♦ H →invisible: 13 fb<sup>-1</sup> at 8 TeV

- : obs. (exp.)  $\sigma/\sigma_{SM}$  limit = 1.9 (1.2)
- : obs. (exp.)  $\sigma/\sigma_{SM}$  limit = 13.3 (10.5)
- : obs. (exp.)  $\sigma/\sigma_{SM}$  limit = 5.3 (6.4)
- : obs. (exp.)  $\sigma/\sigma_{SM}$  limit = 9.8 (8.2)
- : obs. (exp. ) Br(H→invisible) limit = 65% (84%)
- $H \rightarrow bb$  and  $H \rightarrow \tau \tau$  sensitivity is approaching the SM value
- Aiming at a combination with bosonic decay mode for ttH
- Full dataset is being analyzed for the missing analyses
- More sophisticated techniques (MVA) are being explored in order to increase the sensitivity

..... stay tuned .....







♦ VH (H→bb): ATLAS-CONF-2013-079

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2013-079/

•  $ttH (H \rightarrow bb)$ : ATLAS-CONF-2012-135

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2012-135/

• ttH ( $H \rightarrow \gamma \gamma$ ): ATLAS-CONF-2013-080

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2013-080/

•  $H \rightarrow \tau \tau$  : ATLAS-CONF-2012-160

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2012-160/

•  $H \rightarrow \mu\mu$  : ATLAS-CONF-2013-010

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2013-010/

◆ *ZH* (*H*→*inv*): ATLAS-CONF-2013-011

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2013-011/





### Back-Up





### VH(bb): full selection



| Object        | 0-lepton                                                          | 1-lepton                             | 2-lepton                              |  |  |  |  |  |
|---------------|-------------------------------------------------------------------|--------------------------------------|---------------------------------------|--|--|--|--|--|
| Lantona       | 0 loose leptons                                                   | 1 tight lepton                       | 1 medium lepton                       |  |  |  |  |  |
| Leptons       |                                                                   | + 0 loose leptons                    | + 1 loose lepton                      |  |  |  |  |  |
|               |                                                                   | 2 b-tags                             |                                       |  |  |  |  |  |
| Tets          | $p_{\rm T}^{\rm jet_1} > 45 {\rm ~GeV}$                           |                                      |                                       |  |  |  |  |  |
| 3013          | $p_{\rm T}^{\rm jet_2} > 20 { m ~GeV}$                            |                                      |                                       |  |  |  |  |  |
|               | $+ \le 1$ extra jets                                              |                                      |                                       |  |  |  |  |  |
| Missing F.    | $E_{\rm T}^{\rm miss}$ > 120 GeV                                  | $E_{\rm T}^{\rm miss} > 25 { m Gev}$ | $E_{\rm T}^{\rm miss} < 60 { m ~GeV}$ |  |  |  |  |  |
| wissing $L_T$ | $p_{\rm T}^{\rm miss} > 30  {\rm GeV}$                            | -                                    | -                                     |  |  |  |  |  |
|               | $\Delta \phi(E_{\rm T}^{\rm miss}, p_{\rm T}^{\rm miss}) < \pi/2$ |                                      |                                       |  |  |  |  |  |
|               | $\min[\Delta \phi(E_{T}^{\text{miss}}, \text{jet})] > 1.5$        |                                      |                                       |  |  |  |  |  |
|               | $\Delta \phi(E_{\rm T}^{\rm miss}, b\bar{b}) > 2.8$               |                                      |                                       |  |  |  |  |  |
| Vector Boson  | -                                                                 | $m_{\rm T}^W < 120 { m GeV}$         | $83 < m_{\ell\ell} < 99 \text{ GeV}$  |  |  |  |  |  |

| • | $p_{T}^{V}$ | dependent | cuts |
|---|-------------|-----------|------|
|---|-------------|-----------|------|

|              | $p_{\rm T}^V$ [GeV]          | 0-90       | 90-120  | 120-160 | 160-200 | >200 |
|--------------|------------------------------|------------|---------|---------|---------|------|
| All Channels | $\Delta R(b, \bar{b})$       | 0.7-3.4    | 0.7-3.0 | 0.7-2.3 | 0.7-1.8 | <1.4 |
| 1_lenton     | $E_{\rm T}^{\rm miss}$ [GeV] |            | >50     |         |         |      |
| 1-lepton     | $m_{\rm T}^W$ [GeV]          | 40-120 <12 |         |         |         | 0    |

| $m_H = 125 \text{ GeV} \text{ at } 8 \text{ TeV}$ |                         |                |          |          |  |  |  |  |
|---------------------------------------------------|-------------------------|----------------|----------|----------|--|--|--|--|
| $(W/Z)(H \rightarrow b\overline{b})$              | Cross-section × BR [fb] | Acceptance [%] |          |          |  |  |  |  |
| $(W/Z)(H \rightarrow bb)$                         | Closs-section × BK [10] | 0-lepton       | 1-lepton | 2-lepton |  |  |  |  |
| $Z \rightarrow \ell \ell$                         | 15.3                    | 0.0            | 0.9      | 8.4      |  |  |  |  |
| $W \to \ell \nu$                                  | 130.2                   | 0.2            | 3.3      | -        |  |  |  |  |
| $Z \rightarrow \nu \nu$                           | 45.5                    | 2.5            | -        | -        |  |  |  |  |





Interplay between channels for background normalization



 Scale factors returned by the fit for free-floating backgrounds

| Process | Scale factor    |
|---------|-----------------|
| tī      | $1.13 \pm 0.05$ |
| Wb      | $0.89 \pm 0.15$ |
| Wcl     | $1.05 \pm 0.14$ |
| Zb      | $1.30 \pm 0.07$ |
| Zcl     | $0.89 \pm 0.48$ |



Valerio Dao

SUSY 2013 - Trieste







#### Other Vp<sub>⊤</sub> regions







50

100

150

SUSY 2013 - Trieste

250

m<sub>bb</sub> [GeV]

200



### VH: V+jets modelling



#### DeltaPhi\_jj correction extracted from Otag region: correlated with VpT



Valerio Dao

SUSY 2013 - Trieste





◆ Validate analysis techniques by measuring WZ,ZZ with Z→bb : ~5 times bigger than expected signal





•  $\mu_{VZ}$ = 0.9 ± 0.2

4.8 (5.1) observed (expected) significance









- ◆ 1 s.d. excess in 2012 data at m<sub>H</sub>=125 GeV, excess at higher masses too
- deficit in 7 TeV data already observed in previous analysis leads to a small excess in combined result at m<sub>H</sub>=125 GeV





| 2-jet VBF                                                                                                  | Boosted                                                                                            | 2-jet VH                                             | 1-jet                              |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------|--|--|--|--|--|
| Pre-selection: exactly two leptons with opposite charges                                                   |                                                                                                    |                                                      |                                    |  |  |  |  |  |
| 30                                                                                                         | $30 \text{ GeV} < m_{\ell\ell} < 75 \text{ GeV} (30 \text{ GeV} < m_{\ell\ell} < 100 \text{ GeV})$ |                                                      |                                    |  |  |  |  |  |
| for same-fi                                                                                                | avor (different-flavor) l                                                                          | eptons, and $p_{T,\ell 1} + p_{T,\ell 2} > 3$        | 5 GeV                              |  |  |  |  |  |
| At least                                                                                                   | one jet with $p_T > 40$ G                                                                          | $eV ( JVF_{jet}  > 0.5 \text{ if }  \eta_{jet}  < 2$ | 2.4)                               |  |  |  |  |  |
| $E_{\rm T}^{\rm miss} > 40~{\rm Ge}$                                                                       | $eV (E_T^{miss} > 20 \text{ GeV})$ for                                                             | r same-flavor (different-flavo                       | r) leptons                         |  |  |  |  |  |
|                                                                                                            | $H_{\rm T}^{\rm miss}$ > 40 GeV for                                                                | same-flavor leptons                                  |                                    |  |  |  |  |  |
| $0.1 < x_{1,2} < 1$                                                                                        |                                                                                                    |                                                      |                                    |  |  |  |  |  |
| $0.5 < \Delta \phi_{\ell\ell} < 2.5$                                                                       |                                                                                                    |                                                      |                                    |  |  |  |  |  |
| $n_{T} = 25 \text{ GeV}$ (IVF)                                                                             | excluding 2-jet VBF                                                                                | $n_{T} \rightarrow 25 \text{ GeV}$ (IVF)             | excluding 2-jet VBF,               |  |  |  |  |  |
| <i>p</i> <sub><i>T</i>,<i>j</i><sup>2</sup></sub> <i>&gt; 25</i> Get (311)                                 | excluding 2 jet v Di                                                                               | $p_{T,j2} > 25$ GeV (3V1)                            | Boosted and 2-jet VH               |  |  |  |  |  |
| $\Delta \eta_{jj} > 3.0$                                                                                   | $p_{T,\tau\tau} > 100 \text{ GeV}$                                                                 | excluding Boosted                                    | $m_{\tau\tau j} > 225 \text{ GeV}$ |  |  |  |  |  |
| $m_{jj} > 400 \text{ GeV}$                                                                                 | b-tagged jet veto                                                                                  | $\Delta \eta_{jj} < 2.0$                             | b-tagged jet veto                  |  |  |  |  |  |
| b-tagged jet veto                                                                                          |                                                                                                    | $30 \text{ GeV} < m_{jj} < 160 \text{ GeV}$          | _                                  |  |  |  |  |  |
| Lepton centrality and CJV                                                                                  |                                                                                                    | b-tagged jet veto                                    | _                                  |  |  |  |  |  |
|                                                                                                            | 0-jet (7 TeV only)                                                                                 |                                                      |                                    |  |  |  |  |  |
| Pre-selection: exactly two leptons with opposite charges                                                   |                                                                                                    |                                                      |                                    |  |  |  |  |  |
| Different-flavor leptons with 30 GeV < $m_{\ell\ell}$ < 100 GeV and $p_{T,\ell 1} + p_{T,\ell 2}$ > 35 GeV |                                                                                                    |                                                      |                                    |  |  |  |  |  |
| $\Delta \phi_{\ell\ell} > 2.5$                                                                             |                                                                                                    |                                                      |                                    |  |  |  |  |  |
|                                                                                                            | b-tagged                                                                                           | l jet veto                                           |                                    |  |  |  |  |  |



### H→TT: lep-had selection



| 7 Te                                                                        | έV                                                    | 8 TeV                                                                       |                                                                             |  |  |
|-----------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|
| VBF Category                                                                | Boosted Category                                      | VBF Category                                                                | Boosted Category                                                            |  |  |
| $\triangleright p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 30 \mathrm{GeV}$ | -                                                     | $\triangleright p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 30 \mathrm{GeV}$ | $\triangleright p_{\mathrm{T}}^{\tau_{\mathrm{had-vis}}} > 30 \mathrm{GeV}$ |  |  |
| $\triangleright E_{T}^{miss} > 20 \text{ GeV}$                              | $\triangleright E_{T}^{miss} > 20 \text{ GeV}$        | $\triangleright E_{\rm T}^{\rm miss} > 20  {\rm GeV}$                       | $\triangleright E_{T}^{miss} > 20 \text{ GeV}$                              |  |  |
| ▶ $\geq$ 2 jets                                                             | $\triangleright p_T^{\hat{H}} > 100 \text{ GeV}$      | $\triangleright \geq 2$ jets                                                | $\triangleright p_{T}^{\hat{H}} > 100 \text{ GeV}$                          |  |  |
| ▶ $p_{\rm T}^{j1}$ , $p_{\rm T}^{j2}$ > 40 GeV                              | $> 0 < x_1 < 1$                                       | ▶ $p_{\rm T}$ $^{j1}$ > 40, $p_{\rm T}$ $^{j2}$ >30 GeV                     | $0 < x_1 < 1$                                                               |  |  |
| Δη <sub>jj</sub> > 3.0                                                      | ▶ $0.2 < x_2 < 1.2$                                   | $\triangleright \Delta \eta_{jj} > 3.0$                                     | ▶ $0.2 < x_2 < 1.2$                                                         |  |  |
| ▶ $m_{jj}$ > 500 GeV                                                        | ▹ Fails VBF                                           | ▶ m <sub>jj</sub> > 500 GeV                                                 | ▶ Fails VBF                                                                 |  |  |
| <ul> <li>centrality req.</li> </ul>                                         | -                                                     | ▷ centrality req.                                                           | -                                                                           |  |  |
| $\triangleright \eta_{j1} \times \eta_{j2} < 0$                             | -                                                     | $\triangleright \eta_{j1} \times \eta_{j2} < 0$                             | -                                                                           |  |  |
| $\triangleright p_{\rm T}^{\rm Total} < 40  {\rm GeV}$                      | -                                                     | $\triangleright p_{\rm T}^{\rm Total} < 30  {\rm GeV}$                      | -                                                                           |  |  |
| -                                                                           | -                                                     | $\triangleright p_{\mathrm{T}}^{\ell} > 26  \mathrm{GeV}$                   | -                                                                           |  |  |
| • m <sub>T</sub> <50 GeV                                                    | • <i>m</i> <sub>T</sub> <50 GeV                       | • <i>m</i> <sub>T</sub> <50 GeV                                             | • m <sub>T</sub> <50 GeV                                                    |  |  |
| • $\Delta(\Delta R) < 0.8$                                                  | • $\Delta(\Delta R) < 0.8$                            | • $\Delta(\Delta R) < 0.8$                                                  | • $\Delta(\Delta R) < 0.8$                                                  |  |  |
| • $\sum \Delta \phi < 3.5$                                                  | • $\sum \Delta \phi < 1.6$                            | • $\sum \Delta \phi < 2.8$                                                  | -                                                                           |  |  |
| -                                                                           | -                                                     | <ul> <li>b-tagged jet veto</li> </ul>                                       | <ul> <li>b-tagged jet veto</li> </ul>                                       |  |  |
| 1 Jet Category                                                              | 0 Jet Category                                        | 1 Jet Category                                                              | 0 Jet Category                                                              |  |  |
| ▶ ≥ 1 jet, $p_T$ >25 GeV                                                    | $> 0$ jets $p_T > 25$ GeV                             | ▶ ≥ 1 jet, $p_{\rm T}$ >30 GeV                                              | $\triangleright$ 0 jets $p_{\rm T}$ >30 GeV                                 |  |  |
| $\triangleright E_{T}^{miss} > 20 \text{ GeV}$                              | $\triangleright E_{T}^{miss} > 20 \text{ GeV}$        | $\triangleright E_{\rm T}^{\rm miss} > 20  {\rm GeV}$                       | $\triangleright E_{T}^{miss} > 20 \text{ GeV}$                              |  |  |
| <ul> <li>Fails VBF, Boosted</li> </ul>                                      | <ul> <li>Fails Boosted</li> </ul>                     | Fails VBF, Boosted                                                          | Fails Boosted                                                               |  |  |
| • m <sub>T</sub> <50 GeV                                                    | • <i>m</i> <sub>T</sub> <30 GeV                       | • <i>m</i> <sub>T</sub> <50 GeV                                             | • m <sub>T</sub> <30 GeV                                                    |  |  |
| • $\Delta(\Delta R) < 0.6$                                                  | • $\Delta(\Delta R) < 0.5$                            | • $\Delta(\Delta R) < 0.6$                                                  | • $\Delta(\Delta R) < 0.5$                                                  |  |  |
| • $\sum \Delta \phi < 3.5$                                                  | • $\sum \Delta \phi < 3.5$                            | • $\sum \Delta \phi < 3.5$                                                  | • $\sum \Delta \phi < 3.5$                                                  |  |  |
| -                                                                           | • $p_{\mathrm{T}}^{\ell} - p_{\mathrm{T}}^{\tau} < 0$ | -                                                                           | • $p_{\mathrm{T}}^{\ell} - p_{\mathrm{T}}^{\tau} < 0$                       |  |  |

Valerio Dao





|              | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                     |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cut          | Description                                                                                                                                                                               |
| Preselection | No muons or electrons in the event                                                                                                                                                        |
|              | Exactly 2 medium $\tau_{had}$ candidates matched with the trigger objects                                                                                                                 |
|              | At least 1 of the $\tau_{had}$ candidates identified as tight                                                                                                                             |
|              | Both $\tau_{had}$ candidates are from the same primary vertex                                                                                                                             |
|              | Leading $\tau_{had-vis}$ $p_T > 40$ GeV and sub-leading $\tau_{had-vis}$ $p_T > 25$ GeV, $ \eta  < 2.5$                                                                                   |
|              | $\tau_{had}$ candidates have opposite charge and 1- or 3-tracks                                                                                                                           |
|              | $0.8 < \Delta R(\tau_1, \tau_2) < 2.8$                                                                                                                                                    |
|              | $\Delta\eta(\tau,\tau) < 1.5$                                                                                                                                                             |
|              | if $E_{\rm T}^{\rm miss}$ vector is not pointing in between the two taus, min $\left\{\Delta\phi(E_{\rm T}^{\rm miss},\tau_1),\Delta\phi(E_{\rm T}^{\rm miss},\tau_2)\right\} < 0.2\pi$   |
| VBF          | At least two tagging jets, $j_1$ , $j_2$ , leading tagging jet with $p_T > 50$ GeV                                                                                                        |
|              | $\eta_{j1} \times \eta_{j2} < 0, \Delta \eta_{jj} > 2.6$ and invariant mass $m_{jj} > 350$ GeV                                                                                            |
|              | $\min(\eta_{j1}, \eta_{j2}) < \eta_{\tau 1}, \eta_{\tau 2} < \max(\eta_{j1}, \eta_{j2})$                                                                                                  |
|              | $E_{\rm T}^{\rm miss} > 20 {\rm GeV}$                                                                                                                                                     |
| Boosted      | Fails VBF                                                                                                                                                                                 |
|              | At least one tagging jet with $p_T > 70(50)$ GeV in the 8(7) TeV dataset                                                                                                                  |
|              | $\Delta R(\tau_1,\tau_2) < 1.9$                                                                                                                                                           |
|              | $E_{\rm T}^{\rm miss} > 20 {\rm GeV}$                                                                                                                                                     |
|              | if $E_{\rm T}^{\rm miss}$ vector is not pointing in between the two taus, min $\left\{\Delta\phi(E_{\rm T}^{\rm miss},\tau_1),\Delta\phi(E_{\rm T}^{\rm miss},\tau_2)\right\} < 0.1\pi$ . |





• Each channel affected by different backgrounds !!

| bkgd                                         | $	au_{lep}$ - $	au_{lep}$ | $	au_{lep}$ - $	au_{had}$ | $	au_{had}$ - $	au_{had}$ | Rejection cut | estimation                                                                                                 |
|----------------------------------------------|---------------------------|---------------------------|---------------------------|---------------|------------------------------------------------------------------------------------------------------------|
| Ζ→ττ                                         | х                         | х                         | х                         | irreducible   | Embedding: replacing µ in Z→µµ data<br>events with tau decay from MC.<br>Normalization from control region |
| ttbar                                        | х                         | x                         |                           | b-tag veto    | shape from MC, normalization from control region (b-tag)                                                   |
| Z <b>→</b> ee,µµ                             | х                         |                           |                           | Mll<75 GeV    | shape from MC, normalization from control region (low MET, high MII)                                       |
| QCD multi-jet                                | х                         | х                         | х                         |               | SS events and reverted tauID                                                                               |
| $Z \rightarrow ee, e \rightarrow \tau_{had}$ |                           | х                         |                           |               | Shape from MC, normalized from                                                                             |
| Z→II+j, j→ $\tau_{had}$                      |                           | х                         |                           |               | control regions. Using add-on factors<br>to take into account the OS-SS                                    |
| W→Iv+j , j $\rightarrow \tau_{had}$          |                           | х                         |                           | mT            | contribution                                                                                               |
| W→lv+j , j→l                                 | х                         |                           |                           |               | from data: reversing lepton isolation                                                                      |

Dominant systematics are Embedding, Tau Energy Scale and Jet Energy Scale.



### H→TT: embedding validation











# ttH(bb): categories and variables





- Different Njet regions: controlling the effect of JES and ttbar modelling
  - Different Ntag regions: controlling the effect b-tag and ttbar+HF

\* m<sub>bb</sub> = invariant mass of two tagged jets not
assigned to ttbar



mass peak clearly visible

tails are due to incorrectly reconstructed events

#### $H^{T}_{had}$ = scalar sum of jet $p_{T}$ s



large sensitivity to JES uncertainties, ttbar MC modelling systematics



### ttH(bb): selections

- Exploiting lepton+jets (electron or muon) ttbar decay topology Br ~ 30%:
- using lepton to trigger / suppress multijet background
- reasonably high BR (some contribution from dilepton events)



electron+jets en μτ ετ electron+jets en μτ ετ electron+jets

- Typical signal event looks like:
- exactly 1 well isolated lepton (electron or muon)
- large missing transverse energy from escaping neutrino
- 🗞 at least 6 jets
- at least 4 jets identified as coming from b-quarks (tagged)

Due to b-tagging algorithm efficiency and kinematic acceptance of jets:
 *significant leakage of signal in lower jet and b-tag multiplicity regions*

#### Valerio Dao

#### SUSY 2013 - Trieste





#### ttbar identification requires good performance from all the ATLAS sub-detectors

Transverse mass from lepton and neutrino. Use to reduce QCD background  $M_{wT}$  >35 GeV ele,  $E_T^{miss}+M_{wT}$ >60 GeV muon

 $\nu_\ell \to \mathbb{E}_{\mathrm{T}}$  $E_{T}^{miss}$ : vector sum of calo cells isolation energy deposits+muons. Object dependent calibration.  $W^+$  $E_{\tau}^{miss}$ >20 (35) GeV for muon (electron) channel b-jet Jets: anti-kt (R=0.4) from calorimetric clusters. (eta- $p_{\tau}$  corr. factors from MC for calibration).  $p_{\tau}>25 \text{ GeV}, |\eta|<2.5$ Against pile-up condition: requiring at least 75% of sum  $p_{\scriptscriptstyle T}$  of track in the jets is coming from track associated to the jet jet

#### Lepton selection

Electron: 'tight' identification criteria+ calorimetric and track  $p_{\tau}$ >25 GeV,  $|\eta| < 2.47$  *Muon:* combining info in inner tracker and muon spectrometer. Track and calorimetric isolation  $p_{\tau}>20 \text{ GeV}, |\eta| < 2.5$ 

*b-Jets:* multivariate tagger using information from: reconstructed secondary vertex, tracks impact parameter Working point: 70% efficiency for jet from b-quarks, <1% mistag rate

#### Valerio Dao

primary vertex







Main background is jet mis-identified as photons

Shape validated in control regions by reverting photon ID



Table 5: Observed and expected 95% CL limits on the  $t\bar{t}H$  production cross section times  $H \rightarrow \gamma\gamma$  branching ratio relative to the SM expectation at  $m_H = 126.8$  GeV.

|                             | Observed limit | Expected limit | $+2\sigma$ | $+1\sigma$ | $-1\sigma$ | $-2\sigma$ |
|-----------------------------|----------------|----------------|------------|------------|------------|------------|
| Combined (with systematics) | 5.3            | 6.4            | 16.2       | 9.9        | 4.6        | 3.4        |
| Combined (statistics only)  | 5.0            | 6.0            | 13.5       | 8.9        | 4.3        | 3.2        |
| Leptonic (with systematics) | 9.0            | 8.4            | 21.9       | 13.2       | 6.1        | 4.5        |
| Leptonic (statistics only)  | 8.5            | 8.0            | 18.8       | 12.1       | 5.7        | 4.3        |
| Hadronic (with systematics) | 8.4            | 13.6           | 36.4       | 21.6       | 9.8        | 7.3        |
| Hadronic (statistics only)  | 7.9            | 12.6           | 29.1       | 18.9       | 9.1        | 6.8        |

#### Valerio Dao







160



 Two |eta| category regions separated

Events / GeV

Data / SM



SUSY 2013 - Trieste

160









 Variables used for ABCS background estimation