Theory of $B_s \rightarrow \mu^+ \mu^-$

SUSY 2013 ICTP Trieste 26 April 2013

Based on work with Christoph Bobeth, Emanuel Stamou

> Martin Gorbahn University of Liverpool

$B_s \rightarrow \mu^+ \mu^-$

B_s is pseudoscalar – no photon penguin $Q_{A} = (\bar{b}_{L}\gamma_{\mu}q_{L})(\bar{l}\gamma_{\mu}\gamma_{5}l)$

Dominant operator (SM) Wilson helicity suppression $\left(\propto \frac{m_1^2}{M_B^2}\right)$

Effective Lagrangian in the SM (NP + chirality flipped):

$$\mathcal{L}_{\text{eff}} = \frac{G_{\text{F}}}{\sqrt{2}} \frac{\alpha \pi V_{\text{tb}}^* V_{\text{ts}}}{\sin^2 \theta_W} \left(C_S Q_S + C_P Q_P + C_A Q_A \right) + \text{h.c.}$$

Scalar operators: $Q_S = m_b(\bar{b}_R q_L)(\bar{l}l)$ $Q_P = m_b(\bar{b}_R q_L)(\bar{l}\gamma_5 l)$

Alternative normalisation [Misiak `11]:

 $\mathcal{L}_{eff} = G_F^2 \mathcal{M}_W^2 V_{tb}^* V_{ts} \left(C_A Q_A + C_S Q_S + C_P Q_P \right) + h.c.$

 $\begin{array}{l} \text{Lagrangian of 2HDM of type 2} \\ H_u \leftrightarrow u_R \\ -\mathcal{L} = Y^d_{ij}H_d\bar{d}^i_R q^j + Y^u_{ij}H_u\bar{u}^i_R q^j + \text{h.c.} \end{array}$

Lagrangian of 2HDM of type 2

$$H_d \leftrightarrow d_R \qquad H_u \leftrightarrow u_R$$

 $-\mathcal{L} = Y_{ij}^d H_d \overline{d}_R^i q^j + Y_{ij}^u H_u \overline{u}_R^i q^j + h.c.$

Lagrangian of 2HDM of type 2 $H_d \leftrightarrow d_R \qquad H_u \leftrightarrow u_R$ $-\mathcal{L} = Y_{ij}^d H_d \bar{d}_R^i q^j + Y_{ij}^u H_u \bar{u}_R^i q^j + h.c.$

 $\begin{array}{ll} \mbox{Lagrangian of 2HDM of type 2} \\ \mbox{H}_{d} \leftrightarrow d_{R} & \mbox{H}_{u} \leftrightarrow u_{R} \\ \mbox{-}\mathcal{L} = Y^{d}_{ij} \mbox{H}_{d} \bar{d}^{i}_{R} \mbox{q}^{j} + Y^{u}_{ij} \mbox{H}_{u} \bar{u}^{i}_{R} \mbox{q}^{j} + h.c. \end{array}$

Lagrangian of 2HDM of type 2

$$H_d \leftrightarrow d_R \qquad H_u \leftrightarrow u_R$$

 $-\mathcal{L} = Y_{ij}^d H_d \overline{d}_R^i q^j + Y_{ij}^u H_u \overline{u}_R^i q^j + h.c$

Redefinition $m_b \ \& \ V_{CKM}$

Masses and Yukawas not aligned Lagrangian of 2HDM of type 2 $H_d \leftrightarrow d_R \qquad H_u \leftrightarrow u_R$ $-\mathcal{L} = Y_{ij}^d H_d \bar{d}_R^i q^j + Y_{ij}^u H_u \bar{u}_R^i q^j + h.c.$

Note, that the tan β sensitivity of the MSSM is unique:

Large FC scalar interactions: $\kappa_b \bar{b}_R s_L h_d^{0*} \propto Y_b$ is [Babu, Kolda '00; ...] $Br(B_s \rightarrow \mu^+ \mu^-) \propto (\tan \beta)^6 / (M_A)^4$

Note, that the tan β sensitivity of the MSSM is unique:

MSSM Higgs sector at $v_d = 0$: a symmetry $Q(H_d) = 1, \ Q(b_R) = 1$ forbids the operator This protects ΔM_s . Contribution of symmetry-breaking terms small [MG, Jäger, Nierste, Trine '09] $(\bar{b}_R s_L)(\bar{b}_R s_L)$

Measurements of LHCb & ATLAS puts severe constraints on the parameter space at large tan(β)

With high precision in experiment and theory we can test the large tan β MSSM at the TeV scale

CMSSM - tan β =50, A₂=0 2000 Measurements of 1500 LHCb & ATLAS puts چ 1000 ق severe constraints on the parameter space at large $tan(\beta)$ 500 500 1000 1500 2000 [Hurth, Mahmoodi `13] m_{1/2} [GeV]

With high precision in experiment and theory we can test the large tan β MSSM at the TeV scale

Therefore: discuss the standard model theory prediction

Theory Status (SM)

Standard Model: Scalar Operators are highly suppressed

C_A is known at NLO in QCD [Buras, Buchalla; Misiak, Urban `99]

 $C_A(m_t / M_W)^{NLO} = 1.0113 C_A(m_t / M_W)^{LO}$ - for QCD MS-bar $m_t = m_t(m_t)$

The matrix-element $\langle Q_A \rangle$ is given through the precisely known decay constant f_{Bs}

 $(f_{Bs}=225(5)MeV [Dowdall `13] - average = 225(3)MeV staggerd twisted mass N_f=2: f_{Bs}=228(8)MeV [Carrosa `13])$

There will be non-perturbative correction for $\alpha_e \neq 0$

Theory Status (SM)

Soft photon corrections [Buras, Guadagnoli, Isidori `12]: → cut on the invariant mass of the lepton pair suppresses the direct photon emission → bremsstrahlung affects the branching ratio → experimentalists simulate the signal fully inclusive of bremsstrahlung and remove this correction

Theory Status (SM)

Soft photon corrections [Buras, Guadagnoli, Isidori `12]: → cut on the invariant mass of the lepton pair suppresses the direct photon emission → bremsstrahlung affects the branching ratio → experimentalists simulate the signal fully inclusive of bremsstrahlung and remove this correction

The B_s system has a non-zero decay width difference: → instantaneous ≠ time integrated branching ratio [de Bruyn, Fleischer et. al. `12]

 \rightarrow correction factor can be extracted from experiment \rightarrow B_s mixing allows for additional observables beyond the branching ratio [de Bruyn, Fleischer et. al. `12, Buras et. al. `13]

Electroweak Corrections

$$\mathcal{L}_{\text{eff}} = \frac{G_{\text{F}}}{\sqrt{2}} \frac{\alpha \pi V_{\text{tb}}^* V_{\text{ts}}}{\sin^2 \theta_W} C_A Q_A + \text{h.c.}$$

 $G_F \alpha / \sin^2 \theta_W$ does not renormalise under QCD: can be factored out for QCD calculation

Only $G_F \alpha / \sin^2 \theta_W C_A(m_t/M_W)$ invariant under electroweak scheme change

This combination should always give the same result if we use the same input (G_F , α , M_Z , M_t , M_H) up to higher order corrections

Renormalisation of G_F

We identify G_F with the measured muon lifetime and its theory prediction $G_{\mu}=G_{\mu}{}^{(0)}+G_{\mu}{}^{(1)}+...$

G_F can be combined or factored out of the Wilson coefficient

$$\mathcal{H}_{eff} = \tilde{C} \ Q = G_F C \ Q$$

Since G_F is now an observable and C dimensionless the vacuum expectation dependence cancels in C:

$$C^{(0)} = \frac{\tilde{C}^{(0)}}{G^{(0)}_{\mu}}, \quad C^{(EW)} = \frac{\tilde{C}^{(EW)}}{G^{(0)}_{\mu}} - \frac{\tilde{C}^{(0)}G^{(EW)}_{\mu}}{\left(G^{(0)}_{\mu}\right)^2}$$

but other parameters are not so easily fixed from experiment

Electroweak Scheme Uncertainties

$\mathcal{L}_{\text{eff}} = \frac{G_{\text{F}}}{\sqrt{2}} \frac{\alpha \pi V_{\text{tb}}^* V_{\text{ts}}}{\sin^2 \theta_W} C_A(\frac{m_{\text{t}}}{M_W}) Q_A + \text{h.c.}$				
		MS-bar	OS	unct. $B_s \mu^+ \mu^-$
[Buras, et. al. `12]	$\sin \theta_{W}$	0.231	0.223	4 %
	m _t (QCD-MS-bar)	163,2 GeV	164,5 GeV	1 %

Electroweak scheme shift larger then present pure theory error

[Buras, Guadagnoli, Isidori `12]: Follow [Brod, MG, Stamou] and use MS-bar θ_W plus renormalise the masses on-shell (hybrid)

Box contributions contribute differently to l^+l^- modes than to vv. Are both box and penguin corrections tiny in the hybrid scheme?

Renormalisation Schemes

Calculate in the MS-bar scheme using tadpole counterterms to produce gauge independence for intermediate results fit g₁, g₂, v, λ, m_t from data (G_F, α, M_Z, M_t, M_H)

Use OS scheme: Determine M_W including 1-loop corrections from input – then $sin^2\theta_W = 1 - M_W^2 / M_Z^2$

Add finite sin θ_W , m_t and M_W counterterms to C_A^(EW)

NLO predictions should agree up to residual scheme uncertainties if we use the same input data.

There are sizeable shifts going from 1-loop to 2-loop

There are sizeable shifts going from 1-loop to 2-loop

largest shift in the on-shell scheme

There are sizeable shifts going from 1-loop to 2-loop

largest shift in the on-shell scheme

large scale dependence for the MS-bar scheme

There are sizeable shifts going from 1-loop to 2-loop

largest shift in the on-shell scheme

large scale dependence for the MS-bar scheme

and the hybrid scheme

There are sizeable shifts going from 1-loop to 2-loop

largest shift in the on-shell scheme

large scale dependence for the MS-bar scheme

and the hybrid scheme

 $G_{F^2}M_{W^2}$ removes `artificial´ scale (and parameter dependence)

2-loop electroweak corrections reduce the modulus of the Wilson coefficient

Renormalisation Group Equation

Log enhanced QED corrections known [Bobeth, Gambino, MG, Haisch `03; Huber et. al. `05, Misiak `11]

Study residual scale dependence for the G_{F^2} M_{W^2} normalised results

 $G_F^2 M_W^2 C(\mu_0)$ is scale dependent, while $U(M_Z, \mu_0) G_F^2 M_W^2 C(\mu_0)$ is only residually scale dependent.

Wilson Coefficient at mb

The log enhanced QED corrections further reduce the modulus of the Wilson coefficient

Varying μ_b in U(μ_b , m_t) G_F² M_W² C(m_t) gives a measure of uncertainty regarding the contributions of virtual QED corrections at m_b.

non-perturbative QED corrections

Preliminary Theory Prediction

Electroweak corrections shift BFGK value 3.25 10⁻⁹ → 3.16 10⁻⁹

$$\begin{aligned} \mathcal{B}_{\mathsf{B}_{s}}^{(0)} &= 3.16 \times 10^{-9} \left(\frac{\mathsf{M}_{\mathsf{t}}}{173.2 \mathsf{GeV}} \right)^{3.07} \left(\frac{\mathsf{F}_{\mathsf{B}_{s}}}{225 \mathsf{MeV}} \right)^{2} \left(\frac{\tau_{\mathsf{B}_{s}}}{1.500 \mathrm{ps}} \right) \left| \frac{\mathsf{V}_{\mathsf{tb}}^{*} \mathsf{V}_{\mathsf{ts}}}{0.0405} \right|^{2} \\ \overline{\mathcal{B}}_{B_{s}} &= 1.096(17) \times \mathcal{B}_{B_{s}}^{(0)} \end{aligned}$$

Preliminary Theory Prediction

Electroweak corrections shift BFGK value 3.25 $10^{-9} \rightarrow 3.16 \ 10^{-9}$

$$\mathcal{B}_{B_s}^{(0)} = 3.16 \times 10^{-9} \left(\frac{M_t}{173.2 \text{GeV}} \right)^{3.07} \left(\frac{F_{B_s}}{225 \text{MeV}} \right)^2 \left(\frac{\tau_{B_s}}{1.500 \text{ps}} \right) \left| \frac{V_{tb}^* V_{ts}}{0.0405} \right|^2$$
$$\overline{\mathcal{B}}_{B_s} = 1.096(17) \times \mathcal{B}_{B_s}^{(0)}$$

Pie chart is now free of electroweak scheme uncertainties

But: These numerics use multi-loop OS to OCD MS-bar shift for m_t → NNLO QCD Matching removes

1% uncertainty from QED corrections

Conclusions

 $B_s \rightarrow \mu^+ \mu^-$ is highly sensitive to the MSSM Higgs sector at large tan β

No more electroweak scheme ambiguities in $B_s \rightarrow \mu^+ \mu^-$

Corrections small w.r.t. experimental error, significant w.r.t. to theory uncertainty

 $B_s \rightarrow \mu^+ \mu^-$ can provide a precision probe of scalar, but also axial vector coupling interactions